TSTP Solution File: GRP412-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP412-1 : TPTP v8.1.0. Released v2.6.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n019.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:56:57 EDT 2022

% Result   : Unsatisfiable 1.90s 2.10s
% Output   : Refutation 1.90s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   12
%            Number of leaves      :    2
% Syntax   : Number of clauses     :   25 (  25 unt;   0 nHn;   4 RR)
%            Number of literals    :   25 (  24 equ;   3 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :   16 (   3 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    4 (   4 usr;   2 con; 0-2 aty)
%            Number of variables   :   86 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    multiply(inverse(a1),a1) != multiply(inverse(b1),b1),
    file('GRP412-1.p',unknown),
    [] ).

cnf(2,plain,
    multiply(inverse(b1),b1) != multiply(inverse(a1),a1),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[1])]),
    [iquote('copy,1,flip.1')] ).

cnf(5,axiom,
    multiply(A,inverse(multiply(multiply(multiply(inverse(B),B),inverse(multiply(inverse(multiply(A,inverse(B))),C))),B))) = C,
    file('GRP412-1.p',unknown),
    [] ).

cnf(6,plain,
    multiply(A,inverse(multiply(multiply(multiply(inverse(multiply(multiply(multiply(inverse(B),B),inverse(multiply(inverse(multiply(A,inverse(B))),C))),B)),multiply(multiply(multiply(inverse(B),B),inverse(multiply(inverse(multiply(A,inverse(B))),C))),B)),inverse(multiply(inverse(C),D))),multiply(multiply(multiply(inverse(B),B),inverse(multiply(inverse(multiply(A,inverse(B))),C))),B)))) = D,
    inference(para_into,[status(thm),theory(equality)],[5,5]),
    [iquote('para_into,4.1.1.2.1.1.2.1.1.1,4.1.1')] ).

cnf(9,plain,
    inverse(multiply(multiply(multiply(inverse(A),A),inverse(multiply(inverse(multiply(inverse(multiply(B,inverse(C))),inverse(A))),D))),A)) = multiply(B,inverse(multiply(multiply(multiply(inverse(C),C),inverse(D)),C))),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[5,5])]),
    [iquote('para_into,4.1.1.2.1.1.2.1,4.1.1,flip.1')] ).

cnf(12,plain,
    inverse(multiply(multiply(multiply(inverse(A),A),inverse(multiply(inverse(multiply(inverse(multiply(B,multiply(C,inverse(multiply(multiply(multiply(inverse(D),D),inverse(E)),D))))),inverse(A))),F))),A)) = multiply(B,inverse(multiply(multiply(multiply(multiply(C,inverse(multiply(multiply(multiply(inverse(D),D),inverse(E)),D))),multiply(multiply(multiply(inverse(G),G),inverse(multiply(inverse(multiply(inverse(multiply(C,inverse(D))),inverse(G))),E))),G)),inverse(F)),multiply(multiply(multiply(inverse(G),G),inverse(multiply(inverse(multiply(inverse(multiply(C,inverse(D))),inverse(G))),E))),G)))),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[9,9]),9]),
    [iquote('para_into,8.1.1.1.1.2.1.1.1.1.1.2,8.1.1,demod,9')] ).

cnf(20,plain,
    multiply(inverse(multiply(A,inverse(B))),multiply(A,inverse(multiply(multiply(multiply(inverse(B),B),inverse(C)),B)))) = C,
    inference(para_from,[status(thm),theory(equality)],[9,5]),
    [iquote('para_from,8.1.1,4.1.1.2')] ).

cnf(25,plain,
    multiply(A,inverse(multiply(multiply(multiply(multiply(B,inverse(multiply(multiply(multiply(inverse(C),C),inverse(D)),C))),multiply(multiply(multiply(inverse(E),E),inverse(multiply(inverse(multiply(inverse(multiply(B,inverse(C))),inverse(E))),D))),E)),inverse(multiply(inverse(multiply(A,multiply(B,inverse(multiply(multiply(multiply(inverse(C),C),inverse(D)),C))))),F))),multiply(multiply(multiply(inverse(E),E),inverse(multiply(inverse(multiply(inverse(multiply(B,inverse(C))),inverse(E))),D))),E)))) = F,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[9,5]),9]),
    [iquote('para_from,8.1.1,4.1.1.2.1.1.2.1.1.1.2,demod,9')] ).

cnf(33,plain,
    multiply(inverse(multiply(A,inverse(B))),multiply(A,inverse(multiply(C,B)))) = multiply(multiply(multiply(inverse(D),D),inverse(multiply(inverse(multiply(multiply(inverse(B),B),inverse(D))),C))),D),
    inference(para_into,[status(thm),theory(equality)],[20,5]),
    [iquote('para_into,20.1.1.2.2.1.1,4.1.1')] ).

cnf(34,plain,
    multiply(inverse(multiply(A,inverse(B))),multiply(A,multiply(C,inverse(multiply(multiply(multiply(inverse(D),D),inverse(E)),D))))) = multiply(inverse(multiply(inverse(multiply(C,inverse(D))),inverse(B))),E),
    inference(para_into,[status(thm),theory(equality)],[20,9]),
    [iquote('para_into,20.1.1.2.2,8.1.1')] ).

cnf(49,plain,
    multiply(multiply(multiply(inverse(A),A),inverse(multiply(inverse(multiply(multiply(inverse(B),B),inverse(A))),multiply(multiply(inverse(B),B),inverse(C))))),A) = C,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[33,20])]),
    [iquote('para_into,33.1.1,20.1.1,flip.1')] ).

cnf(90,plain,
    multiply(inverse(multiply(A,inverse(B))),multiply(A,inverse(C))) = multiply(inverse(multiply(multiply(inverse(D),D),inverse(B))),multiply(multiply(inverse(D),D),inverse(C))),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[49,33]),49]),
    [iquote('para_from,48.1.1,33.1.1.2.2.1,demod,49')] ).

cnf(91,plain,
    multiply(inverse(multiply(multiply(inverse(A),A),inverse(B))),multiply(multiply(inverse(A),A),inverse(C))) = multiply(inverse(multiply(D,inverse(B))),multiply(D,inverse(C))),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[90])]),
    [iquote('copy,90,flip.1')] ).

cnf(92,plain,
    multiply(inverse(multiply(A,inverse(B))),multiply(A,inverse(C))) = multiply(inverse(multiply(D,inverse(B))),multiply(D,inverse(C))),
    inference(para_into,[status(thm),theory(equality)],[91,91]),
    [iquote('para_into,91.1.1,91.1.1')] ).

cnf(97,plain,
    multiply(multiply(multiply(inverse(A),A),inverse(multiply(inverse(multiply(B,inverse(A))),multiply(B,inverse(C))))),A) = C,
    inference(para_from,[status(thm),theory(equality)],[92,49]),
    [iquote('para_from,92.1.1,48.1.1.1.2.1')] ).

cnf(114,plain,
    multiply(inverse(multiply(A,inverse(B))),multiply(A,C)) = multiply(inverse(multiply(inverse(D),inverse(B))),multiply(inverse(D),C)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[34,6]),5]),
    [iquote('para_into,34.1.1.2.2,6.1.1,demod,5')] ).

cnf(115,plain,
    multiply(inverse(multiply(inverse(A),inverse(B))),multiply(inverse(A),C)) = multiply(inverse(multiply(D,inverse(B))),multiply(D,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[114])]),
    [iquote('copy,114,flip.1')] ).

cnf(124,plain,
    multiply(inverse(multiply(A,inverse(B))),multiply(A,C)) = multiply(inverse(multiply(D,inverse(B))),multiply(D,C)),
    inference(para_into,[status(thm),theory(equality)],[115,115]),
    [iquote('para_into,115.1.1,115.1.1')] ).

cnf(134,plain,
    inverse(multiply(multiply(multiply(inverse(A),A),inverse(multiply(inverse(multiply(B,inverse(A))),multiply(B,C)))),A)) = C,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[124,12]),25]),
    [iquote('para_from,124.1.1,12.1.1.1.1.2.1,demod,25')] ).

cnf(141,plain,
    multiply(inverse(multiply(A,B)),multiply(A,C)) = multiply(inverse(multiply(D,B)),multiply(D,C)),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[134,124]),134]),
    [iquote('para_from,133.1.1,124.1.1.1.1.2,demod,134')] ).

cnf(149,plain,
    multiply(A,multiply(multiply(multiply(inverse(B),B),inverse(multiply(inverse(multiply(C,inverse(B))),multiply(C,A)))),D)) = multiply(inverse(multiply(E,B)),multiply(E,D)),
    inference(para_into,[status(thm),theory(equality)],[141,134]),
    [iquote('para_into,141.1.1.1,133.1.1')] ).

cnf(192,plain,
    multiply(inverse(A),A) = multiply(inverse(multiply(B,C)),multiply(B,C)),
    inference(para_into,[status(thm),theory(equality)],[149,97]),
    [iquote('para_into,149.1.1.2,97.1.1')] ).

cnf(193,plain,
    multiply(inverse(multiply(A,B)),multiply(A,B)) = multiply(inverse(C),C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[192])]),
    [iquote('copy,192,flip.1')] ).

cnf(248,plain,
    multiply(inverse(multiply(A,B)),multiply(A,B)) != multiply(inverse(a1),a1),
    inference(para_from,[status(thm),theory(equality)],[192,2]),
    [iquote('para_from,192.1.1,2.1.1')] ).

cnf(249,plain,
    $false,
    inference(binary,[status(thm)],[248,193]),
    [iquote('binary,248.1,193.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.11  % Problem  : GRP412-1 : TPTP v8.1.0. Released v2.6.0.
% 0.03/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n019.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:27:52 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.90/2.10  ----- Otter 3.3f, August 2004 -----
% 1.90/2.10  The process was started by sandbox on n019.cluster.edu,
% 1.90/2.10  Wed Jul 27 05:27:52 2022
% 1.90/2.10  The command was "./otter".  The process ID is 21073.
% 1.90/2.10  
% 1.90/2.10  set(prolog_style_variables).
% 1.90/2.10  set(auto).
% 1.90/2.10     dependent: set(auto1).
% 1.90/2.10     dependent: set(process_input).
% 1.90/2.10     dependent: clear(print_kept).
% 1.90/2.10     dependent: clear(print_new_demod).
% 1.90/2.10     dependent: clear(print_back_demod).
% 1.90/2.10     dependent: clear(print_back_sub).
% 1.90/2.10     dependent: set(control_memory).
% 1.90/2.10     dependent: assign(max_mem, 12000).
% 1.90/2.10     dependent: assign(pick_given_ratio, 4).
% 1.90/2.10     dependent: assign(stats_level, 1).
% 1.90/2.10     dependent: assign(max_seconds, 10800).
% 1.90/2.10  clear(print_given).
% 1.90/2.10  
% 1.90/2.10  list(usable).
% 1.90/2.10  0 [] A=A.
% 1.90/2.10  0 [] multiply(A,inverse(multiply(multiply(multiply(inverse(B),B),inverse(multiply(inverse(multiply(A,inverse(B))),C))),B)))=C.
% 1.90/2.10  0 [] multiply(inverse(a1),a1)!=multiply(inverse(b1),b1).
% 1.90/2.10  end_of_list.
% 1.90/2.10  
% 1.90/2.10  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.90/2.10  
% 1.90/2.10  All clauses are units, and equality is present; the
% 1.90/2.10  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.90/2.10  
% 1.90/2.10     dependent: set(knuth_bendix).
% 1.90/2.10     dependent: set(anl_eq).
% 1.90/2.10     dependent: set(para_from).
% 1.90/2.10     dependent: set(para_into).
% 1.90/2.10     dependent: clear(para_from_right).
% 1.90/2.10     dependent: clear(para_into_right).
% 1.90/2.10     dependent: set(para_from_vars).
% 1.90/2.10     dependent: set(eq_units_both_ways).
% 1.90/2.10     dependent: set(dynamic_demod_all).
% 1.90/2.10     dependent: set(dynamic_demod).
% 1.90/2.10     dependent: set(order_eq).
% 1.90/2.10     dependent: set(back_demod).
% 1.90/2.10     dependent: set(lrpo).
% 1.90/2.10  
% 1.90/2.10  ------------> process usable:
% 1.90/2.10  ** KEPT (pick-wt=9): 2 [copy,1,flip.1] multiply(inverse(b1),b1)!=multiply(inverse(a1),a1).
% 1.90/2.10  
% 1.90/2.10  ------------> process sos:
% 1.90/2.10  ** KEPT (pick-wt=3): 3 [] A=A.
% 1.90/2.10  ** KEPT (pick-wt=20): 4 [] multiply(A,inverse(multiply(multiply(multiply(inverse(B),B),inverse(multiply(inverse(multiply(A,inverse(B))),C))),B)))=C.
% 1.90/2.10  ---> New Demodulator: 5 [new_demod,4] multiply(A,inverse(multiply(multiply(multiply(inverse(B),B),inverse(multiply(inverse(multiply(A,inverse(B))),C))),B)))=C.
% 1.90/2.10    Following clause subsumed by 3 during input processing: 0 [copy,3,flip.1] A=A.
% 1.90/2.10  >>>> Starting back demodulation with 5.
% 1.90/2.10  
% 1.90/2.10  ======= end of input processing =======
% 1.90/2.10  
% 1.90/2.10  =========== start of search ===========
% 1.90/2.10  
% 1.90/2.10  
% 1.90/2.10  Resetting weight limit to 32.
% 1.90/2.10  
% 1.90/2.10  
% 1.90/2.10  Resetting weight limit to 32.
% 1.90/2.10  
% 1.90/2.10  sos_size=52
% 1.90/2.10  
% 1.90/2.10  
% 1.90/2.10  Resetting weight limit to 27.
% 1.90/2.10  
% 1.90/2.10  
% 1.90/2.10  Resetting weight limit to 27.
% 1.90/2.10  
% 1.90/2.10  sos_size=65
% 1.90/2.10  
% 1.90/2.10  -------- PROOF -------- 
% 1.90/2.10  
% 1.90/2.10  ----> UNIT CONFLICT at   0.18 sec ----> 249 [binary,248.1,193.1] $F.
% 1.90/2.10  
% 1.90/2.10  Length of proof is 22.  Level of proof is 11.
% 1.90/2.10  
% 1.90/2.10  ---------------- PROOF ----------------
% 1.90/2.10  % SZS status Unsatisfiable
% 1.90/2.10  % SZS output start Refutation
% See solution above
% 1.90/2.10  ------------ end of proof -------------
% 1.90/2.10  
% 1.90/2.10  
% 1.90/2.10  Search stopped by max_proofs option.
% 1.90/2.10  
% 1.90/2.10  
% 1.90/2.10  Search stopped by max_proofs option.
% 1.90/2.10  
% 1.90/2.10  ============ end of search ============
% 1.90/2.10  
% 1.90/2.10  -------------- statistics -------------
% 1.90/2.10  clauses given                 42
% 1.90/2.10  clauses generated           3956
% 1.90/2.10  clauses kept                 176
% 1.90/2.10  clauses forward subsumed     626
% 1.90/2.10  clauses back subsumed         29
% 1.90/2.10  Kbytes malloced             7812
% 1.90/2.10  
% 1.90/2.10  ----------- times (seconds) -----------
% 1.90/2.10  user CPU time          0.18          (0 hr, 0 min, 0 sec)
% 1.90/2.10  system CPU time        0.01          (0 hr, 0 min, 0 sec)
% 1.90/2.10  wall-clock time        1             (0 hr, 0 min, 1 sec)
% 1.90/2.10  
% 1.90/2.10  That finishes the proof of the theorem.
% 1.90/2.10  
% 1.90/2.10  Process 21073 finished Wed Jul 27 05:27:53 2022
% 1.90/2.10  Otter interrupted
% 1.90/2.10  PROOF FOUND
%------------------------------------------------------------------------------