TSTP Solution File: GRP402-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP402-1 : TPTP v8.1.0. Released v2.5.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n012.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:56:56 EDT 2022

% Result   : Unsatisfiable 3.05s 3.22s
% Output   : Refutation 3.05s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   10
%            Number of leaves      :    6
% Syntax   : Number of clauses     :   29 (  18 unt;   0 nHn;  11 RR)
%            Number of literals    :   42 (  41 equ;  14 neg)
%            Maximal clause size   :    3 (   1 avg)
%            Maximal term depth    :    4 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    5 (   5 usr;   3 con; 0-2 aty)
%            Number of variables   :   79 (  16 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( multiply(A,B) != multiply(C,B)
    | A = C ),
    file('GRP402-1.p',unknown),
    [] ).

cnf(2,axiom,
    ( multiply(A,B) != multiply(A,C)
    | B = C ),
    file('GRP402-1.p',unknown),
    [] ).

cnf(3,axiom,
    commutator(commutator(a,b),c) != commutator(a,commutator(b,c)),
    file('GRP402-1.p',unknown),
    [] ).

cnf(6,axiom,
    multiply(multiply(A,B),C) = multiply(A,multiply(B,C)),
    file('GRP402-1.p',unknown),
    [] ).

cnf(7,axiom,
    multiply(A,B) = multiply(B,multiply(A,commutator(A,B))),
    file('GRP402-1.p',unknown),
    [] ).

cnf(8,plain,
    multiply(A,multiply(B,commutator(B,A))) = multiply(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[7])]),
    [iquote('copy,7,flip.1')] ).

cnf(10,axiom,
    multiply(commutator(A,B),C) = multiply(C,commutator(A,B)),
    file('GRP402-1.p',unknown),
    [] ).

cnf(11,plain,
    multiply(A,commutator(B,C)) = multiply(commutator(B,C),A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[10])]),
    [iquote('copy,10,flip.1')] ).

cnf(19,plain,
    multiply(A,commutator(A,A)) = A,
    inference(hyper,[status(thm)],[8,2]),
    [iquote('hyper,8,2')] ).

cnf(32,plain,
    ( multiply(A,B) != multiply(B,C)
    | multiply(A,commutator(A,B)) = C ),
    inference(para_from,[status(thm),theory(equality)],[8,2]),
    [iquote('para_from,8.1.1,2.1.1')] ).

cnf(38,plain,
    ( A = B
    | multiply(C,B) != multiply(C,A) ),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[19,2]),19]),
    [iquote('para_into,18.1.1,2.2.1,demod,19')] ).

cnf(40,plain,
    multiply(A,multiply(commutator(A,A),B)) = multiply(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[19,6])]),
    [iquote('para_from,18.1.1,5.1.1.1,flip.1')] ).

cnf(42,plain,
    ( multiply(A,B) != A
    | commutator(A,A) = B ),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[19,2])]),
    [iquote('para_from,18.1.1,2.1.1,flip.1')] ).

cnf(74,plain,
    multiply(A,multiply(commutator(B,C),D)) = multiply(commutator(B,C),multiply(A,D)),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[10,6]),6]),
    [iquote('para_from,10.1.1,5.1.1.1,demod,6')] ).

cnf(77,plain,
    multiply(commutator(A,B),multiply(C,D)) = multiply(C,multiply(commutator(A,B),D)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[74])]),
    [iquote('copy,74,flip.1')] ).

cnf(183,plain,
    multiply(commutator(A,A),A) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[11,19])]),
    [iquote('para_into,11.1.1,18.1.1,flip.1')] ).

cnf(207,plain,
    ( A = B
    | multiply(commutator(B,B),A) != B ),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[183,38])]),
    [iquote('para_from,183.1.1,38.2.1,flip.2')] ).

cnf(210,plain,
    ( multiply(A,B) != B
    | commutator(B,B) = A ),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[183,1])]),
    [iquote('para_from,183.1.1,1.1.1,flip.1')] ).

cnf(483,plain,
    ( A != multiply(B,C)
    | D = C
    | multiply(commutator(A,A),multiply(B,D)) != A ),
    inference(para_from,[status(thm),theory(equality)],[207,2]),
    [iquote('para_from,207.1.1,2.1.1')] ).

cnf(638,plain,
    multiply(commutator(A,A),B) = B,
    inference(flip,[status(thm),theory(equality)],[inference(hyper,[status(thm)],[40,38])]),
    [iquote('hyper,40,38,flip.1')] ).

cnf(662,plain,
    ( A != multiply(B,C)
    | D = C
    | multiply(B,D) != A ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[483]),638]),
    [iquote('back_demod,483,demod,638')] ).

cnf(764,plain,
    commutator(A,A) = commutator(B,B),
    inference(hyper,[status(thm)],[638,210]),
    [iquote('hyper,637,210')] ).

cnf(803,plain,
    ( multiply(A,B) != A
    | commutator(C,C) = B ),
    inference(para_from,[status(thm),theory(equality)],[764,42]),
    [iquote('para_from,764.1.1,42.2.1')] ).

cnf(2694,plain,
    multiply(A,commutator(A,commutator(B,C))) = A,
    inference(hyper,[status(thm)],[32,11]),
    [iquote('hyper,32,11')] ).

cnf(2696,plain,
    commutator(A,A) = commutator(B,commutator(C,D)),
    inference(hyper,[status(thm)],[2694,803]),
    [iquote('hyper,2694,803')] ).

cnf(2710,plain,
    ( A = commutator(B,commutator(C,D))
    | multiply(E,A) != E ),
    inference(para_into,[status(thm),theory(equality)],[2696,803]),
    [iquote('para_into,2696.1.1,803.2.1')] ).

cnf(2801,plain,
    multiply(A,commutator(commutator(B,C),A)) = A,
    inference(hyper,[status(thm)],[662,8,77]),
    [iquote('hyper,662,8,77')] ).

cnf(2807,plain,
    commutator(commutator(A,B),C) = commutator(D,commutator(E,F)),
    inference(hyper,[status(thm)],[2801,2710]),
    [iquote('hyper,2801,2710')] ).

cnf(2808,plain,
    $false,
    inference(binary,[status(thm)],[2807,3]),
    [iquote('binary,2807.1,3.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : GRP402-1 : TPTP v8.1.0. Released v2.5.0.
% 0.07/0.13  % Command  : otter-tptp-script %s
% 0.13/0.34  % Computer : n012.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Wed Jul 27 05:02:35 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 3.05/3.22  ----- Otter 3.3f, August 2004 -----
% 3.05/3.22  The process was started by sandbox on n012.cluster.edu,
% 3.05/3.22  Wed Jul 27 05:02:35 2022
% 3.05/3.22  The command was "./otter".  The process ID is 27972.
% 3.05/3.22  
% 3.05/3.22  set(prolog_style_variables).
% 3.05/3.22  set(auto).
% 3.05/3.22     dependent: set(auto1).
% 3.05/3.22     dependent: set(process_input).
% 3.05/3.22     dependent: clear(print_kept).
% 3.05/3.22     dependent: clear(print_new_demod).
% 3.05/3.22     dependent: clear(print_back_demod).
% 3.05/3.22     dependent: clear(print_back_sub).
% 3.05/3.22     dependent: set(control_memory).
% 3.05/3.22     dependent: assign(max_mem, 12000).
% 3.05/3.22     dependent: assign(pick_given_ratio, 4).
% 3.05/3.22     dependent: assign(stats_level, 1).
% 3.05/3.22     dependent: assign(max_seconds, 10800).
% 3.05/3.22  clear(print_given).
% 3.05/3.22  
% 3.05/3.22  list(usable).
% 3.05/3.22  0 [] A=A.
% 3.05/3.22  0 [] multiply(multiply(X,Y),Z)=multiply(X,multiply(Y,Z)).
% 3.05/3.22  0 [] multiply(A,B)!=multiply(C,B)|A=C.
% 3.05/3.22  0 [] multiply(A,B)!=multiply(A,C)|B=C.
% 3.05/3.22  0 [] multiply(A,B)=multiply(B,multiply(A,commutator(A,B))).
% 3.05/3.22  0 [] multiply(commutator(A,B),C)=multiply(C,commutator(A,B)).
% 3.05/3.22  0 [] commutator(commutator(a,b),c)!=commutator(a,commutator(b,c)).
% 3.05/3.22  end_of_list.
% 3.05/3.22  
% 3.05/3.22  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=2.
% 3.05/3.22  
% 3.05/3.22  This is a Horn set with equality.  The strategy will be
% 3.05/3.22  Knuth-Bendix and hyper_res, with positive clauses in
% 3.05/3.22  sos and nonpositive clauses in usable.
% 3.05/3.22  
% 3.05/3.22     dependent: set(knuth_bendix).
% 3.05/3.22     dependent: set(anl_eq).
% 3.05/3.22     dependent: set(para_from).
% 3.05/3.22     dependent: set(para_into).
% 3.05/3.22     dependent: clear(para_from_right).
% 3.05/3.22     dependent: clear(para_into_right).
% 3.05/3.22     dependent: set(para_from_vars).
% 3.05/3.22     dependent: set(eq_units_both_ways).
% 3.05/3.22     dependent: set(dynamic_demod_all).
% 3.05/3.22     dependent: set(dynamic_demod).
% 3.05/3.22     dependent: set(order_eq).
% 3.05/3.22     dependent: set(back_demod).
% 3.05/3.22     dependent: set(lrpo).
% 3.05/3.22     dependent: set(hyper_res).
% 3.05/3.22     dependent: clear(order_hyper).
% 3.05/3.22  
% 3.05/3.22  ------------> process usable:
% 3.05/3.22  ** KEPT (pick-wt=10): 1 [] multiply(A,B)!=multiply(C,B)|A=C.
% 3.05/3.22  ** KEPT (pick-wt=10): 2 [] multiply(A,B)!=multiply(A,C)|B=C.
% 3.05/3.22  ** KEPT (pick-wt=11): 3 [] commutator(commutator(a,b),c)!=commutator(a,commutator(b,c)).
% 3.05/3.22  
% 3.05/3.22  ------------> process sos:
% 3.05/3.22  ** KEPT (pick-wt=3): 4 [] A=A.
% 3.05/3.22  ** KEPT (pick-wt=11): 5 [] multiply(multiply(A,B),C)=multiply(A,multiply(B,C)).
% 3.05/3.22  ---> New Demodulator: 6 [new_demod,5] multiply(multiply(A,B),C)=multiply(A,multiply(B,C)).
% 3.05/3.22  ** KEPT (pick-wt=11): 8 [copy,7,flip.1] multiply(A,multiply(B,commutator(B,A)))=multiply(B,A).
% 3.05/3.22  ---> New Demodulator: 9 [new_demod,8] multiply(A,multiply(B,commutator(B,A)))=multiply(B,A).
% 3.05/3.22  ** KEPT (pick-wt=11): 10 [] multiply(commutator(A,B),C)=multiply(C,commutator(A,B)).
% 3.05/3.22    Following clause subsumed by 4 during input processing: 0 [copy,4,flip.1] A=A.
% 3.05/3.22  >>>> Starting back demodulation with 6.
% 3.05/3.22  >>>> Starting back demodulation with 9.
% 3.05/3.22  ** KEPT (pick-wt=11): 11 [copy,10,flip.1] multiply(A,commutator(B,C))=multiply(commutator(B,C),A).
% 3.05/3.22    Following clause subsumed by 10 during input processing: 0 [copy,11,flip.1] multiply(commutator(A,B),C)=multiply(C,commutator(A,B)).
% 3.05/3.22  
% 3.05/3.22  ======= end of input processing =======
% 3.05/3.22  
% 3.05/3.22  =========== start of search ===========
% 3.05/3.22  
% 3.05/3.22  
% 3.05/3.22  Resetting weight limit to 12.
% 3.05/3.22  
% 3.05/3.22  
% 3.05/3.22  Resetting weight limit to 12.
% 3.05/3.22  
% 3.05/3.22  sos_size=1794
% 3.05/3.22  
% 3.05/3.22  -------- PROOF -------- 
% 3.05/3.22  
% 3.05/3.22  ----> UNIT CONFLICT at   1.30 sec ----> 2808 [binary,2807.1,3.1] $F.
% 3.05/3.22  
% 3.05/3.22  Length of proof is 22.  Level of proof is 9.
% 3.05/3.22  
% 3.05/3.22  ---------------- PROOF ----------------
% 3.05/3.22  % SZS status Unsatisfiable
% 3.05/3.22  % SZS output start Refutation
% See solution above
% 3.05/3.22  ------------ end of proof -------------
% 3.05/3.22  
% 3.05/3.22  
% 3.05/3.22  Search stopped by max_proofs option.
% 3.05/3.22  
% 3.05/3.22  
% 3.05/3.22  Search stopped by max_proofs option.
% 3.05/3.22  
% 3.05/3.22  ============ end of search ============
% 3.05/3.22  
% 3.05/3.22  -------------- statistics -------------
% 3.05/3.22  clauses given                310
% 3.05/3.22  clauses generated         121701
% 3.05/3.22  clauses kept                2672
% 3.05/3.22  clauses forward subsumed   36847
% 3.05/3.22  clauses back subsumed        283
% 3.05/3.22  Kbytes malloced             4882
% 3.05/3.22  
% 3.05/3.22  ----------- times (seconds) -----------
% 3.05/3.22  user CPU time          1.30          (0 hr, 0 min, 1 sec)
% 3.05/3.22  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 3.05/3.22  wall-clock time        3             (0 hr, 0 min, 3 sec)
% 3.05/3.22  
% 3.05/3.22  That finishes the proof of the theorem.
% 3.05/3.22  
% 3.05/3.22  Process 27972 finished Wed Jul 27 05:02:38 2022
% 3.05/3.22  Otter interrupted
% 3.05/3.22  PROOF FOUND
%------------------------------------------------------------------------------