TSTP Solution File: GRP355-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP355-1 : TPTP v8.1.0. Released v2.5.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n020.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:56:53 EDT 2022

% Result   : Unsatisfiable 227.96s 228.12s
% Output   : Refutation 227.96s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   15
%            Number of leaves      :   12
% Syntax   : Number of clauses     :   42 (  13 unt;  22 nHn;  33 RR)
%            Number of literals    :   97 (  96 equ;  40 neg)
%            Maximal clause size   :   10 (   2 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :   10 (  10 usr;   8 con; 0-2 aty)
%            Number of variables   :   28 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( multiply(sk_c7,sk_c6) != sk_c8
    | multiply(A,sk_c8) != sk_c7
    | inverse(A) != sk_c8
    | multiply(B,sk_c8) != sk_c7
    | inverse(B) != sk_c8
    | multiply(C,sk_c6) != sk_c7
    | inverse(C) != sk_c6
    | multiply(sk_c8,D) != sk_c6
    | multiply(E,sk_c8) != D
    | inverse(E) != sk_c8 ),
    file('GRP355-1.p',unknown),
    [] ).

cnf(2,plain,
    ( multiply(sk_c7,sk_c6) != sk_c8
    | multiply(A,sk_c8) != sk_c7
    | inverse(A) != sk_c8
    | multiply(B,sk_c6) != sk_c7
    | inverse(B) != sk_c6
    | multiply(sk_c8,C) != sk_c6
    | multiply(D,sk_c8) != C
    | inverse(D) != sk_c8 ),
    inference(factor_simp,[status(thm)],[inference(factor_simp,[status(thm)],[inference(copy,[status(thm)],[1])])]),
    [iquote('copy,1,factor_simp,factor_simp')] ).

cnf(3,plain,
    ( multiply(sk_c7,sk_c6) != sk_c8
    | multiply(A,sk_c8) != sk_c7
    | inverse(A) != sk_c8
    | multiply(B,sk_c6) != sk_c7
    | inverse(B) != sk_c6
    | multiply(sk_c8,sk_c7) != sk_c6 ),
    inference(factor_simp,[status(thm)],[inference(factor,[status(thm)],[2])]),
    [iquote('factor,2.2.7,factor_simp')] ).

cnf(5,axiom,
    A = A,
    file('GRP355-1.p',unknown),
    [] ).

cnf(7,axiom,
    multiply(identity,A) = A,
    file('GRP355-1.p',unknown),
    [] ).

cnf(8,axiom,
    multiply(inverse(A),A) = identity,
    file('GRP355-1.p',unknown),
    [] ).

cnf(10,axiom,
    multiply(multiply(A,B),C) = multiply(A,multiply(B,C)),
    file('GRP355-1.p',unknown),
    [] ).

cnf(16,axiom,
    ( multiply(sk_c7,sk_c6) = sk_c8
    | multiply(sk_c8,sk_c5) = sk_c6 ),
    file('GRP355-1.p',unknown),
    [] ).

cnf(17,axiom,
    ( multiply(sk_c7,sk_c6) = sk_c8
    | multiply(sk_c4,sk_c8) = sk_c5 ),
    file('GRP355-1.p',unknown),
    [] ).

cnf(18,axiom,
    ( multiply(sk_c7,sk_c6) = sk_c8
    | inverse(sk_c4) = sk_c8 ),
    file('GRP355-1.p',unknown),
    [] ).

cnf(19,axiom,
    ( multiply(sk_c1,sk_c8) = sk_c7
    | multiply(sk_c2,sk_c8) = sk_c7 ),
    file('GRP355-1.p',unknown),
    [] ).

cnf(20,axiom,
    ( multiply(sk_c1,sk_c8) = sk_c7
    | inverse(sk_c2) = sk_c8 ),
    file('GRP355-1.p',unknown),
    [] ).

cnf(26,axiom,
    ( inverse(sk_c1) = sk_c8
    | multiply(sk_c2,sk_c8) = sk_c7 ),
    file('GRP355-1.p',unknown),
    [] ).

cnf(27,axiom,
    ( inverse(sk_c1) = sk_c8
    | inverse(sk_c2) = sk_c8 ),
    file('GRP355-1.p',unknown),
    [] ).

cnf(45,plain,
    ( multiply(sk_c7,sk_c6) != sk_c8
    | sk_c7 != identity
    | inverse(inverse(sk_c8)) != sk_c8
    | multiply(A,sk_c6) != sk_c7
    | inverse(A) != sk_c6
    | multiply(sk_c8,sk_c7) != sk_c6 ),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[8,3])]),
    [iquote('para_from,8.1.1,3.2.1,flip.2')] ).

cnf(51,plain,
    ( multiply(sk_c8,sk_c1) = identity
    | inverse(sk_c2) = sk_c8 ),
    inference(para_from,[status(thm),theory(equality)],[27,8]),
    [iquote('para_from,27.1.1,8.1.1.1')] ).

cnf(79,plain,
    multiply(inverse(A),multiply(A,B)) = B,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[10,8]),7])]),
    [iquote('para_into,10.1.1.1,8.1.1,demod,7,flip.1')] ).

cnf(111,plain,
    multiply(inverse(inverse(A)),B) = multiply(A,B),
    inference(para_into,[status(thm),theory(equality)],[79,79]),
    [iquote('para_into,79.1.1.2,79.1.1')] ).

cnf(115,plain,
    multiply(A,identity) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[79,8]),111]),
    [iquote('para_into,79.1.1.2,8.1.1,demod,111')] ).

cnf(119,plain,
    inverse(identity) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[115,8])]),
    [iquote('para_into,114.1.1,8.1.1,flip.1')] ).

cnf(259,plain,
    ( multiply(inverse(sk_c7),sk_c8) = sk_c6
    | multiply(sk_c8,sk_c5) = sk_c6 ),
    inference(para_from,[status(thm),theory(equality)],[16,79]),
    [iquote('para_from,16.1.1,79.1.1.2')] ).

cnf(298,plain,
    ( inverse(sk_c8) = sk_c1
    | inverse(sk_c2) = sk_c8 ),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[51,79]),115]),
    [iquote('para_from,51.1.1,79.1.1.2,demod,115')] ).

cnf(315,plain,
    ( multiply(sk_c1,sk_c8) = identity
    | inverse(sk_c2) = sk_c8 ),
    inference(para_from,[status(thm),theory(equality)],[298,8]),
    [iquote('para_from,298.1.1,8.1.1.1')] ).

cnf(328,plain,
    ( multiply(inverse(sk_c7),sk_c8) = sk_c6
    | multiply(sk_c4,sk_c8) = sk_c5 ),
    inference(para_from,[status(thm),theory(equality)],[17,79]),
    [iquote('para_from,17.1.1,79.1.1.2')] ).

cnf(594,plain,
    inverse(inverse(A)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[111,115]),115]),
    [iquote('para_into,110.1.1,114.1.1,demod,115')] ).

cnf(597,plain,
    multiply(A,inverse(A)) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[111,8])]),
    [iquote('para_into,110.1.1,8.1.1,flip.1')] ).

cnf(600,plain,
    ( multiply(sk_c7,sk_c6) != sk_c8
    | sk_c7 != identity
    | multiply(A,sk_c6) != sk_c7
    | inverse(A) != sk_c6
    | multiply(sk_c8,sk_c7) != sk_c6 ),
    inference(unit_del,[status(thm)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[45]),594]),5]),
    [iquote('back_demod,45,demod,594,unit_del,5')] ).

cnf(673,plain,
    ( multiply(sk_c4,sk_c8) = identity
    | multiply(sk_c7,sk_c6) = sk_c8 ),
    inference(para_into,[status(thm),theory(equality)],[597,18]),
    [iquote('para_into,597.1.1.2,18.2.1')] ).

cnf(818,plain,
    ( sk_c7 = identity
    | inverse(sk_c2) = sk_c8 ),
    inference(factor_simp,[status(thm)],[inference(para_into,[status(thm),theory(equality)],[315,20])]),
    [iquote('para_into,315.1.1,20.1.1,factor_simp')] ).

cnf(840,plain,
    ( multiply(sk_c2,sk_c8) = identity
    | sk_c7 = identity ),
    inference(para_from,[status(thm),theory(equality)],[818,597]),
    [iquote('para_from,818.2.1,597.1.1.2')] ).

cnf(1003,plain,
    ( sk_c7 = identity
    | inverse(sk_c1) = sk_c8 ),
    inference(factor_simp,[status(thm)],[inference(para_into,[status(thm),theory(equality)],[840,26])]),
    [iquote('para_into,840.1.1,26.2.1,factor_simp')] ).

cnf(1004,plain,
    ( sk_c7 = identity
    | multiply(sk_c1,sk_c8) = sk_c7 ),
    inference(factor_simp,[status(thm)],[inference(para_into,[status(thm),theory(equality)],[840,19])]),
    [iquote('para_into,840.1.1,19.2.1,factor_simp')] ).

cnf(1018,plain,
    ( multiply(sk_c1,sk_c8) = identity
    | sk_c7 = identity ),
    inference(para_from,[status(thm),theory(equality)],[1003,597]),
    [iquote('para_from,1003.2.1,597.1.1.2')] ).

cnf(1395,plain,
    sk_c7 = identity,
    inference(factor_simp,[status(thm)],[inference(factor_simp,[status(thm)],[inference(para_into,[status(thm),theory(equality)],[1018,1004])])]),
    [iquote('para_into,1018.1.1,1004.2.1,factor_simp,factor_simp')] ).

cnf(1587,plain,
    ( multiply(sk_c4,sk_c8) = identity
    | sk_c8 = sk_c6 ),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[673]),1395,7])]),
    [iquote('back_demod,673,demod,1395,7,flip.2')] ).

cnf(1619,plain,
    ( sk_c8 != sk_c6
    | multiply(A,sk_c6) != identity
    | inverse(A) != sk_c6 ),
    inference(factor_simp,[status(thm)],[inference(unit_del,[status(thm)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[600]),1395,7,1395,1395,1395,115]),5])]),
    [iquote('back_demod,600,demod,1395,7,1395,1395,1395,115,unit_del,5,factor_simp')] ).

cnf(1637,plain,
    ( sk_c8 = sk_c6
    | multiply(sk_c4,sk_c8) = sk_c5 ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[328]),1395,119,7]),
    [iquote('back_demod,328,demod,1395,119,7')] ).

cnf(1643,plain,
    ( sk_c8 = sk_c6
    | multiply(sk_c8,sk_c5) = sk_c6 ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[259]),1395,119,7]),
    [iquote('back_demod,259,demod,1395,119,7')] ).

cnf(1732,plain,
    ( sk_c8 = sk_c6
    | sk_c5 = identity ),
    inference(factor_simp,[status(thm)],[inference(para_into,[status(thm),theory(equality)],[1637,1587])]),
    [iquote('para_into,1637.2.1,1587.1.1,factor_simp')] ).

cnf(1784,plain,
    sk_c8 = sk_c6,
    inference(factor_simp,[status(thm)],[inference(factor_simp,[status(thm)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[1643,1732]),115])])]),
    [iquote('para_into,1643.2.1.2,1732.2.1,demod,115,factor_simp,factor_simp')] ).

cnf(1835,plain,
    ( multiply(A,sk_c6) != identity
    | inverse(A) != sk_c6 ),
    inference(unit_del,[status(thm)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1619]),1784]),5]),
    [iquote('back_demod,1619,demod,1784,unit_del,5')] ).

cnf(2019,plain,
    $false,
    inference(hyper,[status(thm)],[1835,8,594]),
    [iquote('hyper,1835,8,593')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : GRP355-1 : TPTP v8.1.0. Released v2.5.0.
% 0.11/0.13  % Command  : otter-tptp-script %s
% 0.13/0.34  % Computer : n020.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Wed Jul 27 05:01:08 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 2.00/2.18  ----- Otter 3.3f, August 2004 -----
% 2.00/2.18  The process was started by sandbox2 on n020.cluster.edu,
% 2.00/2.18  Wed Jul 27 05:01:08 2022
% 2.00/2.18  The command was "./otter".  The process ID is 23135.
% 2.00/2.18  
% 2.00/2.18  set(prolog_style_variables).
% 2.00/2.18  set(auto).
% 2.00/2.18     dependent: set(auto1).
% 2.00/2.18     dependent: set(process_input).
% 2.00/2.18     dependent: clear(print_kept).
% 2.00/2.18     dependent: clear(print_new_demod).
% 2.00/2.18     dependent: clear(print_back_demod).
% 2.00/2.18     dependent: clear(print_back_sub).
% 2.00/2.18     dependent: set(control_memory).
% 2.00/2.18     dependent: assign(max_mem, 12000).
% 2.00/2.18     dependent: assign(pick_given_ratio, 4).
% 2.00/2.18     dependent: assign(stats_level, 1).
% 2.00/2.18     dependent: assign(max_seconds, 10800).
% 2.00/2.18  clear(print_given).
% 2.00/2.18  
% 2.00/2.18  list(usable).
% 2.00/2.18  0 [] A=A.
% 2.00/2.18  0 [] multiply(identity,X)=X.
% 2.00/2.18  0 [] multiply(inverse(X),X)=identity.
% 2.00/2.18  0 [] multiply(multiply(X,Y),Z)=multiply(X,multiply(Y,Z)).
% 2.00/2.18  0 [] multiply(sk_c7,sk_c6)=sk_c8|multiply(sk_c2,sk_c8)=sk_c7.
% 2.00/2.18  0 [] multiply(sk_c7,sk_c6)=sk_c8|inverse(sk_c2)=sk_c8.
% 2.00/2.18  0 [] multiply(sk_c7,sk_c6)=sk_c8|multiply(sk_c3,sk_c6)=sk_c7.
% 2.00/2.18  0 [] multiply(sk_c7,sk_c6)=sk_c8|inverse(sk_c3)=sk_c6.
% 2.00/2.18  0 [] multiply(sk_c7,sk_c6)=sk_c8|multiply(sk_c8,sk_c5)=sk_c6.
% 2.00/2.18  0 [] multiply(sk_c7,sk_c6)=sk_c8|multiply(sk_c4,sk_c8)=sk_c5.
% 2.00/2.18  0 [] multiply(sk_c7,sk_c6)=sk_c8|inverse(sk_c4)=sk_c8.
% 2.00/2.18  0 [] multiply(sk_c1,sk_c8)=sk_c7|multiply(sk_c2,sk_c8)=sk_c7.
% 2.00/2.18  0 [] multiply(sk_c1,sk_c8)=sk_c7|inverse(sk_c2)=sk_c8.
% 2.00/2.18  0 [] multiply(sk_c1,sk_c8)=sk_c7|multiply(sk_c3,sk_c6)=sk_c7.
% 2.00/2.18  0 [] multiply(sk_c1,sk_c8)=sk_c7|inverse(sk_c3)=sk_c6.
% 2.00/2.18  0 [] multiply(sk_c1,sk_c8)=sk_c7|multiply(sk_c8,sk_c5)=sk_c6.
% 2.00/2.18  0 [] multiply(sk_c1,sk_c8)=sk_c7|multiply(sk_c4,sk_c8)=sk_c5.
% 2.00/2.18  0 [] multiply(sk_c1,sk_c8)=sk_c7|inverse(sk_c4)=sk_c8.
% 2.00/2.18  0 [] inverse(sk_c1)=sk_c8|multiply(sk_c2,sk_c8)=sk_c7.
% 2.00/2.18  0 [] inverse(sk_c1)=sk_c8|inverse(sk_c2)=sk_c8.
% 2.00/2.18  0 [] inverse(sk_c1)=sk_c8|multiply(sk_c3,sk_c6)=sk_c7.
% 2.00/2.18  0 [] inverse(sk_c1)=sk_c8|inverse(sk_c3)=sk_c6.
% 2.00/2.18  0 [] inverse(sk_c1)=sk_c8|multiply(sk_c8,sk_c5)=sk_c6.
% 2.00/2.18  0 [] inverse(sk_c1)=sk_c8|multiply(sk_c4,sk_c8)=sk_c5.
% 2.00/2.18  0 [] inverse(sk_c1)=sk_c8|inverse(sk_c4)=sk_c8.
% 2.00/2.18  0 [] multiply(sk_c7,sk_c6)!=sk_c8|multiply(X2,sk_c8)!=sk_c7|inverse(X2)!=sk_c8|multiply(X1,sk_c8)!=sk_c7|inverse(X1)!=sk_c8|multiply(X3,sk_c6)!=sk_c7|inverse(X3)!=sk_c6|multiply(sk_c8,X4)!=sk_c6|multiply(X5,sk_c8)!=X4|inverse(X5)!=sk_c8.
% 2.00/2.18  end_of_list.
% 2.00/2.18  
% 2.00/2.18  SCAN INPUT: prop=0, horn=0, equality=1, symmetry=0, max_lits=10.
% 2.00/2.18  
% 2.00/2.18  This ia a non-Horn set with equality.  The strategy will be
% 2.00/2.18  Knuth-Bendix, ordered hyper_res, factoring, and unit
% 2.00/2.18  deletion, with positive clauses in sos and nonpositive
% 2.00/2.18  clauses in usable.
% 2.00/2.18  
% 2.00/2.18     dependent: set(knuth_bendix).
% 2.00/2.18     dependent: set(anl_eq).
% 2.00/2.18     dependent: set(para_from).
% 2.00/2.18     dependent: set(para_into).
% 2.00/2.18     dependent: clear(para_from_right).
% 2.00/2.18     dependent: clear(para_into_right).
% 2.00/2.18     dependent: set(para_from_vars).
% 2.00/2.18     dependent: set(eq_units_both_ways).
% 2.00/2.18     dependent: set(dynamic_demod_all).
% 2.00/2.18     dependent: set(dynamic_demod).
% 2.00/2.18     dependent: set(order_eq).
% 2.00/2.18     dependent: set(back_demod).
% 2.00/2.18     dependent: set(lrpo).
% 2.00/2.18     dependent: set(hyper_res).
% 2.00/2.18     dependent: set(unit_deletion).
% 2.00/2.18     dependent: set(factor).
% 2.00/2.18  
% 2.00/2.18  ------------> process usable:
% 2.00/2.18  ** KEPT (pick-wt=37): 2 [copy,1,factor_simp,factor_simp] multiply(sk_c7,sk_c6)!=sk_c8|multiply(A,sk_c8)!=sk_c7|inverse(A)!=sk_c8|multiply(B,sk_c6)!=sk_c7|inverse(B)!=sk_c6|multiply(sk_c8,C)!=sk_c6|multiply(D,sk_c8)!=C|inverse(D)!=sk_c8.
% 2.00/2.18  
% 2.00/2.18  ------------> process sos:
% 2.00/2.18  ** KEPT (pick-wt=3): 5 [] A=A.
% 2.00/2.18  ** KEPT (pick-wt=5): 6 [] multiply(identity,A)=A.
% 2.00/2.18  ---> New Demodulator: 7 [new_demod,6] multiply(identity,A)=A.
% 2.00/2.18  ** KEPT (pick-wt=6): 8 [] multiply(inverse(A),A)=identity.
% 2.00/2.18  ---> New Demodulator: 9 [new_demod,8] multiply(inverse(A),A)=identity.
% 2.00/2.18  ** KEPT (pick-wt=11): 10 [] multiply(multiply(A,B),C)=multiply(A,multiply(B,C)).
% 2.00/2.18  ---> New Demodulator: 11 [new_demod,10] multiply(multiply(A,B),C)=multiply(A,multiply(B,C)).
% 2.00/2.18  ** KEPT (pick-wt=10): 12 [] multiply(sk_c7,sk_c6)=sk_c8|multiply(sk_c2,sk_c8)=sk_c7.
% 2.00/2.18  ** KEPT (pick-wt=9): 13 [] multiply(sk_c7,sk_c6)=sk_c8|inverse(sk_c2)=sk_c8.
% 2.00/2.18  ** KEPT (pick-wt=10): 14 [] multiply(sk_c7,sk_c6)=sk_c8|multiply(sk_c3,sk_c6)=sk_c7.
% 2.00/2.18  ** KEPT (pick-wt=9): 15 [] multiply(sk_c7,sk_c6)=sk_c8|inverse(sk_c3)=sk_c6.
% 2.00/2.18  ** KEPT (pick-wt=10): 16 [] multiply(sk_c7,sk_c6)=sk_c8|multiply(sk_c8,sk_c5)=sk_c6.
% 227.96/228.12  ** KEPT (pick-wt=10): 17 [] multiply(sk_c7,sk_c6)=sk_c8|multiply(sk_c4,sk_c8)=sk_c5.
% 227.96/228.12  ** KEPT (pick-wt=9): 18 [] multiply(sk_c7,sk_c6)=sk_c8|inverse(sk_c4)=sk_c8.
% 227.96/228.12  ** KEPT (pick-wt=10): 19 [] multiply(sk_c1,sk_c8)=sk_c7|multiply(sk_c2,sk_c8)=sk_c7.
% 227.96/228.12  ** KEPT (pick-wt=9): 20 [] multiply(sk_c1,sk_c8)=sk_c7|inverse(sk_c2)=sk_c8.
% 227.96/228.12  ** KEPT (pick-wt=10): 21 [] multiply(sk_c1,sk_c8)=sk_c7|multiply(sk_c3,sk_c6)=sk_c7.
% 227.96/228.12  ** KEPT (pick-wt=9): 22 [] multiply(sk_c1,sk_c8)=sk_c7|inverse(sk_c3)=sk_c6.
% 227.96/228.12  ** KEPT (pick-wt=10): 23 [] multiply(sk_c1,sk_c8)=sk_c7|multiply(sk_c8,sk_c5)=sk_c6.
% 227.96/228.12  ** KEPT (pick-wt=10): 24 [] multiply(sk_c1,sk_c8)=sk_c7|multiply(sk_c4,sk_c8)=sk_c5.
% 227.96/228.12  ** KEPT (pick-wt=9): 25 [] multiply(sk_c1,sk_c8)=sk_c7|inverse(sk_c4)=sk_c8.
% 227.96/228.12  ** KEPT (pick-wt=9): 26 [] inverse(sk_c1)=sk_c8|multiply(sk_c2,sk_c8)=sk_c7.
% 227.96/228.12  ** KEPT (pick-wt=8): 27 [] inverse(sk_c1)=sk_c8|inverse(sk_c2)=sk_c8.
% 227.96/228.12  ** KEPT (pick-wt=9): 28 [] inverse(sk_c1)=sk_c8|multiply(sk_c3,sk_c6)=sk_c7.
% 227.96/228.12  ** KEPT (pick-wt=8): 29 [] inverse(sk_c1)=sk_c8|inverse(sk_c3)=sk_c6.
% 227.96/228.12  ** KEPT (pick-wt=9): 30 [] inverse(sk_c1)=sk_c8|multiply(sk_c8,sk_c5)=sk_c6.
% 227.96/228.12  ** KEPT (pick-wt=9): 31 [] inverse(sk_c1)=sk_c8|multiply(sk_c4,sk_c8)=sk_c5.
% 227.96/228.12  ** KEPT (pick-wt=8): 32 [] inverse(sk_c1)=sk_c8|inverse(sk_c4)=sk_c8.
% 227.96/228.12    Following clause subsumed by 5 during input processing: 0 [copy,5,flip.1] A=A.
% 227.96/228.12  >>>> Starting back demodulation with 7.
% 227.96/228.12  >>>> Starting back demodulation with 9.
% 227.96/228.12  >>>> Starting back demodulation with 11.
% 227.96/228.12  
% 227.96/228.12  ======= end of input processing =======
% 227.96/228.12  
% 227.96/228.12  =========== start of search ===========
% 227.96/228.12  
% 227.96/228.12  -- HEY sandbox2, WE HAVE A PROOF!! -- 
% 227.96/228.12  
% 227.96/228.12  -----> EMPTY CLAUSE at 225.95 sec ----> 2019 [hyper,1835,8,593] $F.
% 227.96/228.12  
% 227.96/228.12  Length of proof is 29.  Level of proof is 14.
% 227.96/228.12  
% 227.96/228.12  ---------------- PROOF ----------------
% 227.96/228.12  % SZS status Unsatisfiable
% 227.96/228.12  % SZS output start Refutation
% See solution above
% 227.96/228.12  ------------ end of proof -------------
% 227.96/228.12  
% 227.96/228.12  
% 227.96/228.12  Search stopped by max_proofs option.
% 227.96/228.12  
% 227.96/228.12  
% 227.96/228.12  Search stopped by max_proofs option.
% 227.96/228.12  
% 227.96/228.12  ============ end of search ============
% 227.96/228.12  
% 227.96/228.12  -------------- statistics -------------
% 227.96/228.12  clauses given                140
% 227.96/228.12  clauses generated         884926
% 227.96/228.12  clauses kept                1987
% 227.96/228.12  clauses forward subsumed  884019
% 227.96/228.12  clauses back subsumed        572
% 227.96/228.12  Kbytes malloced             2929
% 227.96/228.12  
% 227.96/228.12  ----------- times (seconds) -----------
% 227.96/228.12  user CPU time        225.95          (0 hr, 3 min, 45 sec)
% 227.96/228.12  system CPU time        0.01          (0 hr, 0 min, 0 sec)
% 227.96/228.12  wall-clock time      228             (0 hr, 3 min, 48 sec)
% 227.96/228.12  
% 227.96/228.12  That finishes the proof of the theorem.
% 227.96/228.12  
% 227.96/228.12  Process 23135 finished Wed Jul 27 05:04:56 2022
% 227.96/228.12  Otter interrupted
% 227.96/228.12  PROOF FOUND
%------------------------------------------------------------------------------