TSTP Solution File: GRP200-1 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : GRP200-1 : TPTP v8.1.2. Released v2.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox/solver/bin/mcs_scs.jar %d %s

% Computer : n005.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 00:17:42 EDT 2023

% Result   : Unsatisfiable 0.87s 0.96s
% Output   : CNFRefutation 0.87s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   15
%            Number of leaves      :   19
% Syntax   : Number of formulae    :   59 (  50 unt;   9 typ;   0 def)
%            Number of atoms       :   50 (  49 equ)
%            Maximal formula atoms :    1 (   1 avg)
%            Number of connectives :    2 (   2   ~;   0   |;   0   &)
%                                         (   0 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    2 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of types       :    1 (   0 usr)
%            Number of type conns  :    8 (   5   >;   3   *;   0   +;   0  <<)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    9 (   9 usr;   4 con; 0-2 aty)
%            Number of variables   :   87 (   0 sgn;   0   !;   0   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    identity: $i ).

tff(decl_23,type,
    multiply: ( $i * $i ) > $i ).

tff(decl_24,type,
    left_division: ( $i * $i ) > $i ).

tff(decl_25,type,
    right_division: ( $i * $i ) > $i ).

tff(decl_26,type,
    right_inverse: $i > $i ).

tff(decl_27,type,
    left_inverse: $i > $i ).

tff(decl_28,type,
    a: $i ).

tff(decl_29,type,
    b: $i ).

tff(decl_30,type,
    c: $i ).

cnf(moufang1,axiom,
    multiply(multiply(X1,multiply(X2,X3)),X1) = multiply(multiply(X1,X2),multiply(X3,X1)),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',moufang1) ).

cnf(left_identity,axiom,
    multiply(identity,X1) = X1,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',left_identity) ).

cnf(right_identity,axiom,
    multiply(X1,identity) = X1,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',right_identity) ).

cnf(right_division_multiply,axiom,
    right_division(multiply(X1,X2),X2) = X1,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',right_division_multiply) ).

cnf(right_inverse,axiom,
    multiply(X1,right_inverse(X1)) = identity,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',right_inverse) ).

cnf(left_division_multiply,axiom,
    left_division(X1,multiply(X1,X2)) = X2,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',left_division_multiply) ).

cnf(multiply_right_division,axiom,
    multiply(right_division(X1,X2),X2) = X1,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',multiply_right_division) ).

cnf(left_inverse,axiom,
    multiply(left_inverse(X1),X1) = identity,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',left_inverse) ).

cnf(multiply_left_division,axiom,
    multiply(X1,left_division(X1,X2)) = X2,
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',multiply_left_division) ).

cnf(prove_moufang2,negated_conjecture,
    multiply(multiply(multiply(a,b),c),b) != multiply(a,multiply(b,multiply(c,b))),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',prove_moufang2) ).

cnf(c_0_10,axiom,
    multiply(multiply(X1,multiply(X2,X3)),X1) = multiply(multiply(X1,X2),multiply(X3,X1)),
    moufang1 ).

cnf(c_0_11,axiom,
    multiply(identity,X1) = X1,
    left_identity ).

cnf(c_0_12,axiom,
    multiply(X1,identity) = X1,
    right_identity ).

cnf(c_0_13,axiom,
    right_division(multiply(X1,X2),X2) = X1,
    right_division_multiply ).

cnf(c_0_14,plain,
    multiply(multiply(X1,X2),X1) = multiply(X1,multiply(X2,X1)),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_10,c_0_11]),c_0_12]) ).

cnf(c_0_15,axiom,
    multiply(X1,right_inverse(X1)) = identity,
    right_inverse ).

cnf(c_0_16,axiom,
    left_division(X1,multiply(X1,X2)) = X2,
    left_division_multiply ).

cnf(c_0_17,plain,
    right_division(multiply(X1,multiply(X2,X1)),X1) = multiply(X1,X2),
    inference(spm,[status(thm)],[c_0_13,c_0_14]) ).

cnf(c_0_18,axiom,
    multiply(right_division(X1,X2),X2) = X1,
    multiply_right_division ).

cnf(c_0_19,axiom,
    multiply(left_inverse(X1),X1) = identity,
    left_inverse ).

cnf(c_0_20,plain,
    multiply(X1,multiply(right_inverse(X1),X1)) = X1,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_14,c_0_15]),c_0_11]) ).

cnf(c_0_21,plain,
    left_division(X1,X1) = identity,
    inference(spm,[status(thm)],[c_0_16,c_0_12]) ).

cnf(c_0_22,plain,
    multiply(X1,right_division(X2,X1)) = right_division(multiply(X1,X2),X1),
    inference(spm,[status(thm)],[c_0_17,c_0_18]) ).

cnf(c_0_23,plain,
    multiply(multiply(X1,X2),multiply(X3,X1)) = multiply(X1,multiply(multiply(X2,X3),X1)),
    inference(rw,[status(thm)],[c_0_10,c_0_14]) ).

cnf(c_0_24,plain,
    right_division(identity,X1) = left_inverse(X1),
    inference(spm,[status(thm)],[c_0_13,c_0_19]) ).

cnf(c_0_25,plain,
    multiply(right_inverse(X1),X1) = identity,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_16,c_0_20]),c_0_21]) ).

cnf(c_0_26,plain,
    left_division(X1,right_division(multiply(X1,X2),X1)) = right_division(X2,X1),
    inference(spm,[status(thm)],[c_0_16,c_0_22]) ).

cnf(c_0_27,plain,
    multiply(X1,multiply(multiply(X2,left_inverse(X1)),X1)) = multiply(X1,X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_23,c_0_19]),c_0_12]) ).

cnf(c_0_28,plain,
    left_inverse(right_inverse(X1)) = X1,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_13,c_0_15]),c_0_24]) ).

cnf(c_0_29,plain,
    right_inverse(X1) = left_inverse(X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_13,c_0_25]),c_0_24]) ).

cnf(c_0_30,plain,
    multiply(X1,left_inverse(X2)) = right_division(X1,X2),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_26,c_0_27]),c_0_26]),c_0_13]) ).

cnf(c_0_31,plain,
    left_inverse(left_inverse(X1)) = X1,
    inference(rw,[status(thm)],[c_0_28,c_0_29]) ).

cnf(c_0_32,plain,
    right_division(X1,left_inverse(X2)) = multiply(X1,X2),
    inference(spm,[status(thm)],[c_0_30,c_0_31]) ).

cnf(c_0_33,plain,
    multiply(X1,multiply(multiply(left_inverse(X2),X3),X1)) = multiply(right_division(X1,X2),multiply(X3,X1)),
    inference(spm,[status(thm)],[c_0_23,c_0_30]) ).

cnf(c_0_34,plain,
    multiply(multiply(left_inverse(X1),X2),X1) = multiply(left_inverse(X1),multiply(X2,X1)),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_22,c_0_32]),c_0_32]) ).

cnf(c_0_35,plain,
    right_division(X1,X1) = identity,
    inference(spm,[status(thm)],[c_0_13,c_0_11]) ).

cnf(c_0_36,plain,
    multiply(X1,multiply(left_inverse(X1),multiply(X2,X1))) = multiply(X2,X1),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_33,c_0_34]),c_0_35]),c_0_11]) ).

cnf(c_0_37,axiom,
    multiply(X1,left_division(X1,X2)) = X2,
    multiply_left_division ).

cnf(c_0_38,plain,
    multiply(left_inverse(X1),multiply(X1,X2)) = X2,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_34,c_0_36]),c_0_30]),c_0_18]),c_0_31]),c_0_30]),c_0_22]),c_0_18]) ).

cnf(c_0_39,plain,
    left_division(X1,right_division(X1,X2)) = left_inverse(X2),
    inference(spm,[status(thm)],[c_0_16,c_0_30]) ).

cnf(c_0_40,plain,
    right_division(X1,left_division(X2,X1)) = X2,
    inference(spm,[status(thm)],[c_0_13,c_0_37]) ).

cnf(c_0_41,plain,
    left_division(multiply(X1,X2),multiply(X1,multiply(multiply(X2,X3),X1))) = multiply(X3,X1),
    inference(spm,[status(thm)],[c_0_16,c_0_23]) ).

cnf(c_0_42,plain,
    left_division(left_inverse(X1),X2) = multiply(X1,X2),
    inference(spm,[status(thm)],[c_0_16,c_0_38]) ).

cnf(c_0_43,plain,
    left_inverse(left_division(X1,X2)) = left_division(X2,X1),
    inference(spm,[status(thm)],[c_0_39,c_0_40]) ).

cnf(c_0_44,plain,
    left_division(multiply(X1,X2),multiply(X1,multiply(X3,X1))) = multiply(left_division(X2,X3),X1),
    inference(spm,[status(thm)],[c_0_41,c_0_37]) ).

cnf(c_0_45,plain,
    left_division(left_division(X1,X2),X3) = multiply(left_division(X2,X1),X3),
    inference(spm,[status(thm)],[c_0_42,c_0_43]) ).

cnf(c_0_46,plain,
    multiply(multiply(left_division(X1,X2),X3),X2) = left_division(X1,multiply(X2,multiply(X3,X2))),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_44,c_0_37]),c_0_45]) ).

cnf(c_0_47,negated_conjecture,
    multiply(multiply(multiply(a,b),c),b) != multiply(a,multiply(b,multiply(c,b))),
    prove_moufang2 ).

cnf(c_0_48,plain,
    multiply(multiply(multiply(X1,X2),X3),X2) = multiply(X1,multiply(X2,multiply(X3,X2))),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_46,c_0_42]),c_0_42]) ).

cnf(c_0_49,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_47,c_0_48])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem    : GRP200-1 : TPTP v8.1.2. Released v2.2.0.
% 0.11/0.13  % Command    : java -jar /export/starexec/sandbox/solver/bin/mcs_scs.jar %d %s
% 0.13/0.34  % Computer : n005.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit   : 300
% 0.13/0.34  % WCLimit    : 300
% 0.13/0.34  % DateTime   : Tue Aug 29 01:08:38 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 0.20/0.57  start to proof: theBenchmark
% 0.87/0.96  % Version  : CSE_E---1.5
% 0.87/0.96  % Problem  : theBenchmark.p
% 0.87/0.96  % Proof found
% 0.87/0.96  % SZS status Theorem for theBenchmark.p
% 0.87/0.96  % SZS output start Proof
% See solution above
% 0.87/0.97  % Total time : 0.389000 s
% 0.87/0.97  % SZS output end Proof
% 0.87/0.97  % Total time : 0.391000 s
%------------------------------------------------------------------------------