TSTP Solution File: GRP192-1 by Moca---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Moca---0.1
% Problem  : GRP192-1 : TPTP v8.1.0. Bugfixed v1.2.1.
% Transfm  : none
% Format   : tptp:raw
% Command  : moca.sh %s

% Computer : n025.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sat Jul 16 10:54:01 EDT 2022

% Result   : Unsatisfiable 1.28s 1.39s
% Output   : Proof 1.28s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.10/0.12  % Problem  : GRP192-1 : TPTP v8.1.0. Bugfixed v1.2.1.
% 0.10/0.12  % Command  : moca.sh %s
% 0.12/0.33  % Computer : n025.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 600
% 0.12/0.33  % DateTime : Tue Jun 14 06:43:09 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.28/1.39  % SZS status Unsatisfiable
% 1.28/1.39  % SZS output start Proof
% 1.28/1.39  The input problem is unsatisfiable because
% 1.28/1.39  
% 1.28/1.39  [1] the following set of Horn clauses is unsatisfiable:
% 1.28/1.39  
% 1.28/1.39  	multiply(identity, X) = X
% 1.28/1.39  	multiply(inverse(X), X) = identity
% 1.28/1.39  	multiply(multiply(X, Y), Z) = multiply(X, multiply(Y, Z))
% 1.28/1.39  	greatest_lower_bound(X, Y) = greatest_lower_bound(Y, X)
% 1.28/1.39  	least_upper_bound(X, Y) = least_upper_bound(Y, X)
% 1.28/1.39  	greatest_lower_bound(X, greatest_lower_bound(Y, Z)) = greatest_lower_bound(greatest_lower_bound(X, Y), Z)
% 1.28/1.39  	least_upper_bound(X, least_upper_bound(Y, Z)) = least_upper_bound(least_upper_bound(X, Y), Z)
% 1.28/1.39  	least_upper_bound(X, X) = X
% 1.28/1.39  	greatest_lower_bound(X, X) = X
% 1.28/1.39  	least_upper_bound(X, greatest_lower_bound(X, Y)) = X
% 1.28/1.39  	greatest_lower_bound(X, least_upper_bound(X, Y)) = X
% 1.28/1.39  	multiply(X, least_upper_bound(Y, Z)) = least_upper_bound(multiply(X, Y), multiply(X, Z))
% 1.28/1.39  	multiply(X, greatest_lower_bound(Y, Z)) = greatest_lower_bound(multiply(X, Y), multiply(X, Z))
% 1.28/1.39  	multiply(least_upper_bound(Y, Z), X) = least_upper_bound(multiply(Y, X), multiply(Z, X))
% 1.28/1.39  	multiply(greatest_lower_bound(Y, Z), X) = greatest_lower_bound(multiply(Y, X), multiply(Z, X))
% 1.28/1.39  	least_upper_bound(identity, X) = X
% 1.28/1.39  	multiply(a, b) = multiply(b, a) ==> \bottom
% 1.28/1.39  
% 1.28/1.39  This holds because
% 1.28/1.39  
% 1.28/1.39  [2] the following E entails the following G (Claessen-Smallbone's transformation (2018)):
% 1.28/1.39  
% 1.28/1.39  E:
% 1.28/1.39  	f1(multiply(a, b)) = true__
% 1.28/1.39  	f1(multiply(b, a)) = false__
% 1.28/1.39  	greatest_lower_bound(X, X) = X
% 1.28/1.39  	greatest_lower_bound(X, Y) = greatest_lower_bound(Y, X)
% 1.28/1.39  	greatest_lower_bound(X, greatest_lower_bound(Y, Z)) = greatest_lower_bound(greatest_lower_bound(X, Y), Z)
% 1.28/1.39  	greatest_lower_bound(X, least_upper_bound(X, Y)) = X
% 1.28/1.39  	least_upper_bound(X, X) = X
% 1.28/1.39  	least_upper_bound(X, Y) = least_upper_bound(Y, X)
% 1.28/1.39  	least_upper_bound(X, greatest_lower_bound(X, Y)) = X
% 1.28/1.39  	least_upper_bound(X, least_upper_bound(Y, Z)) = least_upper_bound(least_upper_bound(X, Y), Z)
% 1.28/1.39  	least_upper_bound(identity, X) = X
% 1.28/1.39  	multiply(X, greatest_lower_bound(Y, Z)) = greatest_lower_bound(multiply(X, Y), multiply(X, Z))
% 1.28/1.39  	multiply(X, least_upper_bound(Y, Z)) = least_upper_bound(multiply(X, Y), multiply(X, Z))
% 1.28/1.39  	multiply(greatest_lower_bound(Y, Z), X) = greatest_lower_bound(multiply(Y, X), multiply(Z, X))
% 1.28/1.39  	multiply(identity, X) = X
% 1.28/1.39  	multiply(inverse(X), X) = identity
% 1.28/1.39  	multiply(least_upper_bound(Y, Z), X) = least_upper_bound(multiply(Y, X), multiply(Z, X))
% 1.28/1.39  	multiply(multiply(X, Y), Z) = multiply(X, multiply(Y, Z))
% 1.28/1.39  G:
% 1.28/1.39  	true__ = false__
% 1.28/1.39  
% 1.28/1.39  This holds because
% 1.28/1.39  
% 1.28/1.39  [3] E entails the following ordered TRS and the lhs and rhs of G join by the TRS:
% 1.28/1.39  
% 1.28/1.39  	X0 = Y0
% 1.28/1.39  	false__ = Y0
% 1.28/1.39  	greatest_lower_bound(X, Y) = greatest_lower_bound(Y, X)
% 1.28/1.39  	identity = Y0
% 1.28/1.39  	least_upper_bound(X, Y) = least_upper_bound(Y, X)
% 1.28/1.39  	f1(multiply(a, b)) -> true__
% 1.28/1.39  	f1(multiply(b, a)) -> false__
% 1.28/1.39  	greatest_lower_bound(X, X) -> X
% 1.28/1.39  	greatest_lower_bound(X, least_upper_bound(X, Y)) -> X
% 1.28/1.39  	greatest_lower_bound(X0, Y0) -> false__
% 1.28/1.39  	greatest_lower_bound(Y0, greatest_lower_bound(Y1, Y0)) -> greatest_lower_bound(Y0, Y1)
% 1.28/1.39  	greatest_lower_bound(Y0, greatest_lower_bound(Y1, greatest_lower_bound(Y0, Y1))) -> greatest_lower_bound(Y0, Y1)
% 1.28/1.39  	greatest_lower_bound(Y0, least_upper_bound(Y1, Y0)) -> Y0
% 1.28/1.39  	greatest_lower_bound(Y1, greatest_lower_bound(X1, Y1)) -> greatest_lower_bound(X1, Y1)
% 1.28/1.39  	greatest_lower_bound(Y1, greatest_lower_bound(Y1, Y2)) -> greatest_lower_bound(Y1, Y2)
% 1.28/1.39  	greatest_lower_bound(Y1, identity) -> identity
% 1.28/1.39  	greatest_lower_bound(Y1, multiply(Y2, Y1)) -> Y1
% 1.28/1.39  	greatest_lower_bound(greatest_lower_bound(X, Y), Z) -> greatest_lower_bound(X, greatest_lower_bound(Y, Z))
% 1.28/1.39  	greatest_lower_bound(identity, Y1) -> identity
% 1.28/1.39  	greatest_lower_bound(multiply(X, Y), multiply(X, Z)) -> multiply(X, greatest_lower_bound(Y, Z))
% 1.28/1.39  	greatest_lower_bound(multiply(Y, X), multiply(Z, X)) -> multiply(greatest_lower_bound(Y, Z), X)
% 1.28/1.39  	least_upper_bound(X, X) -> X
% 1.28/1.39  	least_upper_bound(X, greatest_lower_bound(X, Y)) -> X
% 1.28/1.39  	least_upper_bound(X0, Y0) -> Y0
% 1.28/1.39  	least_upper_bound(Y0, X0) -> Y0
% 1.28/1.39  	least_upper_bound(Y0, greatest_lower_bound(Y1, Y0)) -> Y0
% 1.28/1.39  	least_upper_bound(Y0, least_upper_bound(Y1, Y0)) -> least_upper_bound(Y0, Y1)
% 1.28/1.39  	least_upper_bound(Y0, least_upper_bound(Y1, least_upper_bound(Y0, Y1))) -> least_upper_bound(Y0, Y1)
% 1.28/1.39  	least_upper_bound(Y1, identity) -> Y1
% 1.28/1.39  	least_upper_bound(Y1, least_upper_bound(X1, Y1)) -> least_upper_bound(X1, Y1)
% 1.28/1.39  	least_upper_bound(Y1, least_upper_bound(Y1, Y2)) -> least_upper_bound(Y1, Y2)
% 1.28/1.39  	least_upper_bound(Y1, multiply(Y2, Y1)) -> multiply(Y2, Y1)
% 1.28/1.39  	least_upper_bound(identity, X) -> X
% 1.28/1.39  	least_upper_bound(least_upper_bound(X, Y), Z) -> least_upper_bound(X, least_upper_bound(Y, Z))
% 1.28/1.39  	least_upper_bound(multiply(X, Y), multiply(X, Z)) -> multiply(X, least_upper_bound(Y, Z))
% 1.28/1.39  	least_upper_bound(multiply(Y, X), multiply(Z, X)) -> multiply(least_upper_bound(Y, Z), X)
% 1.28/1.39  	multiply(X0, Y0) -> Y0
% 1.28/1.39  	multiply(identity, X) -> X
% 1.28/1.39  	multiply(inverse(X), X) -> identity
% 1.28/1.39  	multiply(inverse(Y1), multiply(Y1, Y2)) -> Y2
% 1.28/1.39  	multiply(inverse(identity), Y1) -> Y1
% 1.28/1.39  	multiply(inverse(inverse(Y1)), identity) -> Y1
% 1.28/1.39  	multiply(inverse(inverse(identity)), Y1) -> Y1
% 1.28/1.39  	multiply(inverse(inverse(inverse(X0))), X0) -> identity
% 1.28/1.39  	multiply(multiply(X, Y), Z) -> multiply(X, multiply(Y, Z))
% 1.28/1.39  	true__ -> false__
% 1.28/1.39  with the LPO induced by
% 1.28/1.39  	f1 > a > b > inverse > identity > greatest_lower_bound > least_upper_bound > multiply > true__ > false__
% 1.28/1.39  
% 1.28/1.39  % SZS output end Proof
% 1.28/1.39  
%------------------------------------------------------------------------------