TSTP Solution File: GRP181-3 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : GRP181-3 : TPTP v8.1.2. Bugfixed v1.2.1.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n009.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 01:17:35 EDT 2023

% Result   : Unsatisfiable 2.64s 0.68s
% Output   : Proof 2.64s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : GRP181-3 : TPTP v8.1.2. Bugfixed v1.2.1.
% 0.03/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n009.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Mon Aug 28 23:24:20 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 2.64/0.68  Command-line arguments: --flatten
% 2.64/0.68  
% 2.64/0.68  % SZS status Unsatisfiable
% 2.64/0.68  
% 2.64/0.68  % SZS output start Proof
% 2.64/0.68  Axiom 1 (left_identity): multiply(identity, X) = X.
% 2.64/0.68  Axiom 2 (symmetry_of_glb): greatest_lower_bound(X, Y) = greatest_lower_bound(Y, X).
% 2.64/0.68  Axiom 3 (p12x_1): greatest_lower_bound(a, c) = greatest_lower_bound(b, c).
% 2.64/0.68  Axiom 4 (symmetry_of_lub): least_upper_bound(X, Y) = least_upper_bound(Y, X).
% 2.64/0.68  Axiom 5 (p12x_2): least_upper_bound(a, c) = least_upper_bound(b, c).
% 2.64/0.68  Axiom 6 (left_inverse): multiply(inverse(X), X) = identity.
% 2.64/0.68  Axiom 7 (associativity): multiply(multiply(X, Y), Z) = multiply(X, multiply(Y, Z)).
% 2.64/0.68  Axiom 8 (p12x_4): inverse(least_upper_bound(X, Y)) = greatest_lower_bound(inverse(X), inverse(Y)).
% 2.64/0.68  Axiom 9 (monotony_glb1): multiply(X, greatest_lower_bound(Y, Z)) = greatest_lower_bound(multiply(X, Y), multiply(X, Z)).
% 2.64/0.68  Axiom 10 (monotony_glb2): multiply(greatest_lower_bound(X, Y), Z) = greatest_lower_bound(multiply(X, Z), multiply(Y, Z)).
% 2.64/0.68  
% 2.64/0.68  Lemma 11: multiply(inverse(X), multiply(X, Y)) = Y.
% 2.64/0.68  Proof:
% 2.64/0.68    multiply(inverse(X), multiply(X, Y))
% 2.64/0.68  = { by axiom 7 (associativity) R->L }
% 2.64/0.68    multiply(multiply(inverse(X), X), Y)
% 2.64/0.68  = { by axiom 6 (left_inverse) }
% 2.64/0.68    multiply(identity, Y)
% 2.64/0.68  = { by axiom 1 (left_identity) }
% 2.64/0.68    Y
% 2.64/0.68  
% 2.64/0.68  Lemma 12: multiply(inverse(least_upper_bound(Y, X)), Y) = multiply(inverse(X), greatest_lower_bound(Y, X)).
% 2.64/0.68  Proof:
% 2.64/0.68    multiply(inverse(least_upper_bound(Y, X)), Y)
% 2.64/0.68  = { by axiom 4 (symmetry_of_lub) R->L }
% 2.64/0.68    multiply(inverse(least_upper_bound(X, Y)), Y)
% 2.64/0.68  = { by axiom 8 (p12x_4) }
% 2.64/0.68    multiply(greatest_lower_bound(inverse(X), inverse(Y)), Y)
% 2.64/0.68  = { by axiom 2 (symmetry_of_glb) R->L }
% 2.64/0.68    multiply(greatest_lower_bound(inverse(Y), inverse(X)), Y)
% 2.64/0.68  = { by axiom 10 (monotony_glb2) }
% 2.64/0.68    greatest_lower_bound(multiply(inverse(Y), Y), multiply(inverse(X), Y))
% 2.64/0.68  = { by axiom 6 (left_inverse) }
% 2.64/0.68    greatest_lower_bound(identity, multiply(inverse(X), Y))
% 2.64/0.68  = { by axiom 6 (left_inverse) R->L }
% 2.64/0.68    greatest_lower_bound(multiply(inverse(X), X), multiply(inverse(X), Y))
% 2.64/0.68  = { by axiom 9 (monotony_glb1) R->L }
% 2.64/0.68    multiply(inverse(X), greatest_lower_bound(X, Y))
% 2.64/0.68  = { by axiom 2 (symmetry_of_glb) }
% 2.64/0.68    multiply(inverse(X), greatest_lower_bound(Y, X))
% 2.64/0.68  
% 2.64/0.68  Goal 1 (prove_p12x): a = b.
% 2.64/0.68  Proof:
% 2.64/0.68    a
% 2.64/0.68  = { by lemma 11 R->L }
% 2.64/0.68    multiply(inverse(inverse(least_upper_bound(a, c))), multiply(inverse(least_upper_bound(a, c)), a))
% 2.64/0.68  = { by lemma 12 }
% 2.64/0.68    multiply(inverse(inverse(least_upper_bound(a, c))), multiply(inverse(c), greatest_lower_bound(a, c)))
% 2.64/0.68  = { by axiom 3 (p12x_1) }
% 2.64/0.68    multiply(inverse(inverse(least_upper_bound(a, c))), multiply(inverse(c), greatest_lower_bound(b, c)))
% 2.64/0.68  = { by lemma 12 R->L }
% 2.64/0.68    multiply(inverse(inverse(least_upper_bound(a, c))), multiply(inverse(least_upper_bound(b, c)), b))
% 2.64/0.68  = { by axiom 5 (p12x_2) R->L }
% 2.64/0.68    multiply(inverse(inverse(least_upper_bound(a, c))), multiply(inverse(least_upper_bound(a, c)), b))
% 2.64/0.68  = { by lemma 11 }
% 2.64/0.68    b
% 2.64/0.68  % SZS output end Proof
% 2.64/0.68  
% 2.64/0.68  RESULT: Unsatisfiable (the axioms are contradictory).
%------------------------------------------------------------------------------