TSTP Solution File: GRP159-1 by Moca---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Moca---0.1
% Problem  : GRP159-1 : TPTP v8.1.0. Bugfixed v1.2.1.
% Transfm  : none
% Format   : tptp:raw
% Command  : moca.sh %s

% Computer : n026.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sat Jul 16 10:53:30 EDT 2022

% Result   : Unsatisfiable 9.98s 9.93s
% Output   : Proof 9.98s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : GRP159-1 : TPTP v8.1.0. Bugfixed v1.2.1.
% 0.07/0.12  % Command  : moca.sh %s
% 0.12/0.33  % Computer : n026.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 600
% 0.12/0.33  % DateTime : Mon Jun 13 22:28:21 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 9.98/9.93  % SZS status Unsatisfiable
% 9.98/9.93  % SZS output start Proof
% 9.98/9.93  The input problem is unsatisfiable because
% 9.98/9.93  
% 9.98/9.93  [1] the following set of Horn clauses is unsatisfiable:
% 9.98/9.93  
% 9.98/9.93  	multiply(identity, X) = X
% 9.98/9.93  	multiply(inverse(X), X) = identity
% 9.98/9.93  	multiply(multiply(X, Y), Z) = multiply(X, multiply(Y, Z))
% 9.98/9.93  	greatest_lower_bound(X, Y) = greatest_lower_bound(Y, X)
% 9.98/9.93  	least_upper_bound(X, Y) = least_upper_bound(Y, X)
% 9.98/9.93  	greatest_lower_bound(X, greatest_lower_bound(Y, Z)) = greatest_lower_bound(greatest_lower_bound(X, Y), Z)
% 9.98/9.93  	least_upper_bound(X, least_upper_bound(Y, Z)) = least_upper_bound(least_upper_bound(X, Y), Z)
% 9.98/9.93  	least_upper_bound(X, X) = X
% 9.98/9.93  	greatest_lower_bound(X, X) = X
% 9.98/9.93  	least_upper_bound(X, greatest_lower_bound(X, Y)) = X
% 9.98/9.93  	greatest_lower_bound(X, least_upper_bound(X, Y)) = X
% 9.98/9.93  	multiply(X, least_upper_bound(Y, Z)) = least_upper_bound(multiply(X, Y), multiply(X, Z))
% 9.98/9.93  	multiply(X, greatest_lower_bound(Y, Z)) = greatest_lower_bound(multiply(X, Y), multiply(X, Z))
% 9.98/9.93  	multiply(least_upper_bound(Y, Z), X) = least_upper_bound(multiply(Y, X), multiply(Z, X))
% 9.98/9.93  	multiply(greatest_lower_bound(Y, Z), X) = greatest_lower_bound(multiply(Y, X), multiply(Z, X))
% 9.98/9.93  	greatest_lower_bound(a, b) = a
% 9.98/9.93  	least_upper_bound(multiply(c, a), multiply(c, b)) = multiply(c, b) ==> \bottom
% 9.98/9.93  
% 9.98/9.93  This holds because
% 9.98/9.93  
% 9.98/9.93  [2] the following E entails the following G (Claessen-Smallbone's transformation (2018)):
% 9.98/9.93  
% 9.98/9.93  E:
% 9.98/9.93  	f1(least_upper_bound(multiply(c, a), multiply(c, b))) = true__
% 9.98/9.93  	f1(multiply(c, b)) = false__
% 9.98/9.93  	greatest_lower_bound(X, X) = X
% 9.98/9.93  	greatest_lower_bound(X, Y) = greatest_lower_bound(Y, X)
% 9.98/9.93  	greatest_lower_bound(X, greatest_lower_bound(Y, Z)) = greatest_lower_bound(greatest_lower_bound(X, Y), Z)
% 9.98/9.93  	greatest_lower_bound(X, least_upper_bound(X, Y)) = X
% 9.98/9.93  	greatest_lower_bound(a, b) = a
% 9.98/9.93  	least_upper_bound(X, X) = X
% 9.98/9.93  	least_upper_bound(X, Y) = least_upper_bound(Y, X)
% 9.98/9.93  	least_upper_bound(X, greatest_lower_bound(X, Y)) = X
% 9.98/9.93  	least_upper_bound(X, least_upper_bound(Y, Z)) = least_upper_bound(least_upper_bound(X, Y), Z)
% 9.98/9.93  	multiply(X, greatest_lower_bound(Y, Z)) = greatest_lower_bound(multiply(X, Y), multiply(X, Z))
% 9.98/9.93  	multiply(X, least_upper_bound(Y, Z)) = least_upper_bound(multiply(X, Y), multiply(X, Z))
% 9.98/9.93  	multiply(greatest_lower_bound(Y, Z), X) = greatest_lower_bound(multiply(Y, X), multiply(Z, X))
% 9.98/9.93  	multiply(identity, X) = X
% 9.98/9.93  	multiply(inverse(X), X) = identity
% 9.98/9.93  	multiply(least_upper_bound(Y, Z), X) = least_upper_bound(multiply(Y, X), multiply(Z, X))
% 9.98/9.93  	multiply(multiply(X, Y), Z) = multiply(X, multiply(Y, Z))
% 9.98/9.93  G:
% 9.98/9.93  	true__ = false__
% 9.98/9.93  
% 9.98/9.93  This holds because
% 9.98/9.93  
% 9.98/9.93  [3] E entails the following ordered TRS and the lhs and rhs of G join by the TRS:
% 9.98/9.93  
% 9.98/9.93  	greatest_lower_bound(X, Y) = greatest_lower_bound(Y, X)
% 9.98/9.93  	greatest_lower_bound(Y0, a) = greatest_lower_bound(a, Y0)
% 9.98/9.93  	least_upper_bound(X, Y) = least_upper_bound(Y, X)
% 9.98/9.93  	f1(least_upper_bound(multiply(c, a), multiply(c, b))) -> true__
% 9.98/9.93  	f1(multiply(c, b)) -> false__
% 9.98/9.93  	greatest_lower_bound(X, X) -> X
% 9.98/9.93  	greatest_lower_bound(X, least_upper_bound(X, Y)) -> X
% 9.98/9.93  	greatest_lower_bound(Y0, greatest_lower_bound(Y1, Y0)) -> greatest_lower_bound(Y0, Y1)
% 9.98/9.93  	greatest_lower_bound(Y0, least_upper_bound(Y1, Y0)) -> Y0
% 9.98/9.93  	greatest_lower_bound(Y1, greatest_lower_bound(Y1, Y2)) -> greatest_lower_bound(Y1, Y2)
% 9.98/9.93  	greatest_lower_bound(a, b) -> a
% 9.98/9.93  	greatest_lower_bound(a, greatest_lower_bound(Y0, b)) -> greatest_lower_bound(a, Y0)
% 9.98/9.93  	greatest_lower_bound(a, greatest_lower_bound(b, Y2)) -> greatest_lower_bound(a, Y2)
% 9.98/9.93  	greatest_lower_bound(a, least_upper_bound(Y0, b)) -> a
% 9.98/9.93  	greatest_lower_bound(a, least_upper_bound(b, X1)) -> a
% 9.98/9.93  	greatest_lower_bound(b, a) -> a
% 9.98/9.93  	greatest_lower_bound(b, greatest_lower_bound(Y0, a)) -> greatest_lower_bound(Y0, a)
% 9.98/9.93  	greatest_lower_bound(b, greatest_lower_bound(a, Y2)) -> greatest_lower_bound(a, Y2)
% 9.98/9.93  	greatest_lower_bound(greatest_lower_bound(X, Y), Z) -> greatest_lower_bound(X, greatest_lower_bound(Y, Z))
% 9.98/9.93  	greatest_lower_bound(least_upper_bound(X0, a), least_upper_bound(b, X0)) -> least_upper_bound(X0, a)
% 9.98/9.93  	greatest_lower_bound(least_upper_bound(X0, b), least_upper_bound(b, X0)) -> least_upper_bound(X0, b)
% 9.98/9.93  	greatest_lower_bound(least_upper_bound(Y0, b), a) -> a
% 9.98/9.93  	greatest_lower_bound(least_upper_bound(b, X0), least_upper_bound(a, X0)) -> least_upper_bound(a, X0)
% 9.98/9.93  	greatest_lower_bound(least_upper_bound(b, Y0), a) -> a
% 9.98/9.93  	greatest_lower_bound(multiply(Y0, b), multiply(Y0, a)) -> multiply(Y0, a)
% 9.98/9.93  	inverse(identity) -> identity
% 9.98/9.93  	inverse(inverse(Y1)) -> Y1
% 9.98/9.93  	least_upper_bound(X, X) -> X
% 9.98/9.93  	least_upper_bound(X, greatest_lower_bound(X, Y)) -> X
% 9.98/9.93  	least_upper_bound(Y0, greatest_lower_bound(Y1, Y0)) -> Y0
% 9.98/9.93  	least_upper_bound(Y0, least_upper_bound(Y1, Y0)) -> least_upper_bound(Y0, Y1)
% 9.98/9.93  	least_upper_bound(Y1, least_upper_bound(Y1, Y2)) -> least_upper_bound(Y1, Y2)
% 9.98/9.93  	least_upper_bound(a, b) -> b
% 9.98/9.93  	least_upper_bound(a, least_upper_bound(Y0, b)) -> least_upper_bound(b, Y0)
% 9.98/9.93  	least_upper_bound(a, least_upper_bound(b, Y2)) -> least_upper_bound(b, Y2)
% 9.98/9.93  	least_upper_bound(b, a) -> b
% 9.98/9.93  	least_upper_bound(b, greatest_lower_bound(Y0, a)) -> b
% 9.98/9.93  	least_upper_bound(b, greatest_lower_bound(a, X0)) -> b
% 9.98/9.93  	least_upper_bound(b, least_upper_bound(X0, a)) -> least_upper_bound(b, X0)
% 9.98/9.93  	least_upper_bound(b, least_upper_bound(a, Y0)) -> least_upper_bound(b, Y0)
% 9.98/9.93  	least_upper_bound(greatest_lower_bound(X0, a), greatest_lower_bound(a, X0)) -> greatest_lower_bound(X0, a)
% 9.98/9.93  	least_upper_bound(greatest_lower_bound(X0, b), greatest_lower_bound(a, X0)) -> greatest_lower_bound(X0, b)
% 9.98/9.93  	least_upper_bound(greatest_lower_bound(Y0, b), greatest_lower_bound(Y0, a)) -> greatest_lower_bound(Y0, b)
% 9.98/9.93  	least_upper_bound(greatest_lower_bound(b, Y0), greatest_lower_bound(a, Y0)) -> greatest_lower_bound(Y0, b)
% 9.98/9.93  	least_upper_bound(least_upper_bound(X, Y), Z) -> least_upper_bound(X, least_upper_bound(Y, Z))
% 9.98/9.93  	least_upper_bound(multiply(Y0, b), multiply(Y0, a)) -> multiply(Y0, b)
% 9.98/9.93  	multiply(X, greatest_lower_bound(Y, Z)) -> greatest_lower_bound(multiply(X, Y), multiply(X, Z))
% 9.98/9.93  	multiply(X, least_upper_bound(Y, Z)) -> least_upper_bound(multiply(X, Y), multiply(X, Z))
% 9.98/9.93  	multiply(X0, inverse(X0)) -> identity
% 9.98/9.93  	multiply(X0, multiply(inverse(X0), Y1)) -> Y1
% 9.98/9.93  	multiply(Y0, identity) -> Y0
% 9.98/9.93  	multiply(Y0, multiply(Y1, inverse(multiply(Y0, Y1)))) -> identity
% 9.98/9.93  	multiply(greatest_lower_bound(Y, Z), X) -> greatest_lower_bound(multiply(Y, X), multiply(Z, X))
% 9.98/9.93  	multiply(greatest_lower_bound(Y0, identity), Y1) -> greatest_lower_bound(Y1, multiply(Y0, Y1))
% 9.98/9.93  	multiply(identity, X) -> X
% 9.98/9.93  	multiply(inverse(X), X) -> identity
% 9.98/9.93  	multiply(inverse(Y1), multiply(Y1, Y2)) -> Y2
% 9.98/9.93  	multiply(least_upper_bound(Y, Z), X) -> least_upper_bound(multiply(Y, X), multiply(Z, X))
% 9.98/9.93  	multiply(least_upper_bound(Y0, identity), Y1) -> least_upper_bound(Y1, multiply(Y0, Y1))
% 9.98/9.93  	multiply(multiply(X, Y), Z) -> multiply(X, multiply(Y, Z))
% 9.98/9.93  	true__ -> false__
% 9.98/9.93  with the LPO induced by
% 9.98/9.93  	c > f1 > inverse > identity > multiply > least_upper_bound > greatest_lower_bound > a > b > true__ > false__
% 9.98/9.93  
% 9.98/9.93  % SZS output end Proof
% 9.98/9.93  
%------------------------------------------------------------------------------