TSTP Solution File: GRP146-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP146-1 : TPTP v8.1.0. Bugfixed v1.2.1.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n022.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:56:33 EDT 2022

% Result   : Unsatisfiable 1.69s 1.88s
% Output   : Refutation 1.69s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    3
%            Number of leaves      :    5
% Syntax   : Number of clauses     :    8 (   8 unt;   0 nHn;   5 RR)
%            Number of literals    :    8 (   7 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    4 (   4 usr;   3 con; 0-2 aty)
%            Number of variables   :    7 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    least_upper_bound(least_upper_bound(a,b),c) != c,
    file('GRP146-1.p',unknown),
    [] ).

cnf(2,axiom,
    A = A,
    file('GRP146-1.p',unknown),
    [] ).

cnf(14,axiom,
    least_upper_bound(A,least_upper_bound(B,C)) = least_upper_bound(least_upper_bound(A,B),C),
    file('GRP146-1.p',unknown),
    [] ).

cnf(16,plain,
    least_upper_bound(least_upper_bound(A,B),C) = least_upper_bound(A,least_upper_bound(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[14])]),
    [iquote('copy,14,flip.1')] ).

cnf(34,axiom,
    least_upper_bound(a,c) = c,
    file('GRP146-1.p',unknown),
    [] ).

cnf(36,axiom,
    least_upper_bound(b,c) = c,
    file('GRP146-1.p',unknown),
    [] ).

cnf(37,plain,
    c != c,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1]),16,36,34]),
    [iquote('back_demod,1,demod,16,36,34')] ).

cnf(38,plain,
    $false,
    inference(binary,[status(thm)],[37,2]),
    [iquote('binary,37.1,2.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : GRP146-1 : TPTP v8.1.0. Bugfixed v1.2.1.
% 0.12/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n022.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 05:15:35 EDT 2022
% 0.19/0.33  % CPUTime  : 
% 1.69/1.88  ----- Otter 3.3f, August 2004 -----
% 1.69/1.88  The process was started by sandbox2 on n022.cluster.edu,
% 1.69/1.88  Wed Jul 27 05:15:35 2022
% 1.69/1.88  The command was "./otter".  The process ID is 14159.
% 1.69/1.88  
% 1.69/1.88  set(prolog_style_variables).
% 1.69/1.88  set(auto).
% 1.69/1.88     dependent: set(auto1).
% 1.69/1.88     dependent: set(process_input).
% 1.69/1.88     dependent: clear(print_kept).
% 1.69/1.88     dependent: clear(print_new_demod).
% 1.69/1.88     dependent: clear(print_back_demod).
% 1.69/1.88     dependent: clear(print_back_sub).
% 1.69/1.88     dependent: set(control_memory).
% 1.69/1.88     dependent: assign(max_mem, 12000).
% 1.69/1.88     dependent: assign(pick_given_ratio, 4).
% 1.69/1.88     dependent: assign(stats_level, 1).
% 1.69/1.88     dependent: assign(max_seconds, 10800).
% 1.69/1.88  clear(print_given).
% 1.69/1.88  
% 1.69/1.88  list(usable).
% 1.69/1.88  0 [] A=A.
% 1.69/1.88  0 [] multiply(identity,X)=X.
% 1.69/1.88  0 [] multiply(inverse(X),X)=identity.
% 1.69/1.88  0 [] multiply(multiply(X,Y),Z)=multiply(X,multiply(Y,Z)).
% 1.69/1.88  0 [] greatest_lower_bound(X,Y)=greatest_lower_bound(Y,X).
% 1.69/1.88  0 [] least_upper_bound(X,Y)=least_upper_bound(Y,X).
% 1.69/1.88  0 [] greatest_lower_bound(X,greatest_lower_bound(Y,Z))=greatest_lower_bound(greatest_lower_bound(X,Y),Z).
% 1.69/1.88  0 [] least_upper_bound(X,least_upper_bound(Y,Z))=least_upper_bound(least_upper_bound(X,Y),Z).
% 1.69/1.88  0 [] least_upper_bound(X,X)=X.
% 1.69/1.88  0 [] greatest_lower_bound(X,X)=X.
% 1.69/1.88  0 [] least_upper_bound(X,greatest_lower_bound(X,Y))=X.
% 1.69/1.88  0 [] greatest_lower_bound(X,least_upper_bound(X,Y))=X.
% 1.69/1.88  0 [] multiply(X,least_upper_bound(Y,Z))=least_upper_bound(multiply(X,Y),multiply(X,Z)).
% 1.69/1.88  0 [] multiply(X,greatest_lower_bound(Y,Z))=greatest_lower_bound(multiply(X,Y),multiply(X,Z)).
% 1.69/1.88  0 [] multiply(least_upper_bound(Y,Z),X)=least_upper_bound(multiply(Y,X),multiply(Z,X)).
% 1.69/1.88  0 [] multiply(greatest_lower_bound(Y,Z),X)=greatest_lower_bound(multiply(Y,X),multiply(Z,X)).
% 1.69/1.88  0 [] least_upper_bound(a,c)=c.
% 1.69/1.88  0 [] least_upper_bound(b,c)=c.
% 1.69/1.88  0 [] least_upper_bound(least_upper_bound(a,b),c)!=c.
% 1.69/1.88  end_of_list.
% 1.69/1.88  
% 1.69/1.88  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.69/1.88  
% 1.69/1.88  All clauses are units, and equality is present; the
% 1.69/1.88  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.69/1.88  
% 1.69/1.88     dependent: set(knuth_bendix).
% 1.69/1.88     dependent: set(anl_eq).
% 1.69/1.88     dependent: set(para_from).
% 1.69/1.88     dependent: set(para_into).
% 1.69/1.88     dependent: clear(para_from_right).
% 1.69/1.88     dependent: clear(para_into_right).
% 1.69/1.88     dependent: set(para_from_vars).
% 1.69/1.88     dependent: set(eq_units_both_ways).
% 1.69/1.88     dependent: set(dynamic_demod_all).
% 1.69/1.88     dependent: set(dynamic_demod).
% 1.69/1.88     dependent: set(order_eq).
% 1.69/1.88     dependent: set(back_demod).
% 1.69/1.88     dependent: set(lrpo).
% 1.69/1.88  
% 1.69/1.88  ------------> process usable:
% 1.69/1.88  ** KEPT (pick-wt=7): 1 [] least_upper_bound(least_upper_bound(a,b),c)!=c.
% 1.69/1.88  
% 1.69/1.88  ------------> process sos:
% 1.69/1.88  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.69/1.88  ** KEPT (pick-wt=5): 3 [] multiply(identity,A)=A.
% 1.69/1.88  ---> New Demodulator: 4 [new_demod,3] multiply(identity,A)=A.
% 1.69/1.88  ** KEPT (pick-wt=6): 5 [] multiply(inverse(A),A)=identity.
% 1.69/1.88  ---> New Demodulator: 6 [new_demod,5] multiply(inverse(A),A)=identity.
% 1.69/1.88  ** KEPT (pick-wt=11): 7 [] multiply(multiply(A,B),C)=multiply(A,multiply(B,C)).
% 1.69/1.88  ---> New Demodulator: 8 [new_demod,7] multiply(multiply(A,B),C)=multiply(A,multiply(B,C)).
% 1.69/1.88  ** KEPT (pick-wt=7): 9 [] greatest_lower_bound(A,B)=greatest_lower_bound(B,A).
% 1.69/1.88  ** KEPT (pick-wt=7): 10 [] least_upper_bound(A,B)=least_upper_bound(B,A).
% 1.69/1.88  ** KEPT (pick-wt=11): 12 [copy,11,flip.1] greatest_lower_bound(greatest_lower_bound(A,B),C)=greatest_lower_bound(A,greatest_lower_bound(B,C)).
% 1.69/1.88  ---> New Demodulator: 13 [new_demod,12] greatest_lower_bound(greatest_lower_bound(A,B),C)=greatest_lower_bound(A,greatest_lower_bound(B,C)).
% 1.69/1.88  ** KEPT (pick-wt=11): 15 [copy,14,flip.1] least_upper_bound(least_upper_bound(A,B),C)=least_upper_bound(A,least_upper_bound(B,C)).
% 1.69/1.88  ---> New Demodulator: 16 [new_demod,15] least_upper_bound(least_upper_bound(A,B),C)=least_upper_bound(A,least_upper_bound(B,C)).
% 1.69/1.88  ** KEPT (pick-wt=5): 17 [] least_upper_bound(A,A)=A.
% 1.69/1.88  ---> New Demodulator: 18 [new_demod,17] least_upper_bound(A,A)=A.
% 1.69/1.88  ** KEPT (pick-wt=5): 19 [] greatest_lower_bound(A,A)=A.
% 1.69/1.88  ---> New Demodulator: 20 [new_demod,19] greatest_lower_bound(A,A)=A.
% 1.69/1.88  ** KEPT (pick-wt=7): 21 [] least_upper_bound(A,greatest_lower_bound(A,B))=A.
% 1.69/1.88  ---> New Demodulator: 22 [new_demod,21] least_upper_bound(A,greatest_lower_bound(A,B))=A.
% 1.69/1.88  ** KEPT (pick-wt=7): 23 [] greatest_lower_b
% 1.69/1.88  -------- PROOF -------- 
% 1.69/1.88  ound(A,least_upper_bound(A,B))=A.
% 1.69/1.88  ---> New Demodulator: 24 [new_demod,23] greatest_lower_bound(A,least_upper_bound(A,B))=A.
% 1.69/1.88  ** KEPT (pick-wt=13): 25 [] multiply(A,least_upper_bound(B,C))=least_upper_bound(multiply(A,B),multiply(A,C)).
% 1.69/1.88  ---> New Demodulator: 26 [new_demod,25] multiply(A,least_upper_bound(B,C))=least_upper_bound(multiply(A,B),multiply(A,C)).
% 1.69/1.88  ** KEPT (pick-wt=13): 27 [] multiply(A,greatest_lower_bound(B,C))=greatest_lower_bound(multiply(A,B),multiply(A,C)).
% 1.69/1.88  ---> New Demodulator: 28 [new_demod,27] multiply(A,greatest_lower_bound(B,C))=greatest_lower_bound(multiply(A,B),multiply(A,C)).
% 1.69/1.88  ** KEPT (pick-wt=13): 29 [] multiply(least_upper_bound(A,B),C)=least_upper_bound(multiply(A,C),multiply(B,C)).
% 1.69/1.88  ---> New Demodulator: 30 [new_demod,29] multiply(least_upper_bound(A,B),C)=least_upper_bound(multiply(A,C),multiply(B,C)).
% 1.69/1.88  ** KEPT (pick-wt=13): 31 [] multiply(greatest_lower_bound(A,B),C)=greatest_lower_bound(multiply(A,C),multiply(B,C)).
% 1.69/1.88  ---> New Demodulator: 32 [new_demod,31] multiply(greatest_lower_bound(A,B),C)=greatest_lower_bound(multiply(A,C),multiply(B,C)).
% 1.69/1.88  ** KEPT (pick-wt=5): 33 [] least_upper_bound(a,c)=c.
% 1.69/1.88  ---> New Demodulator: 34 [new_demod,33] least_upper_bound(a,c)=c.
% 1.69/1.88  ** KEPT (pick-wt=5): 35 [] least_upper_bound(b,c)=c.
% 1.69/1.88  ---> New Demodulator: 36 [new_demod,35] least_upper_bound(b,c)=c.
% 1.69/1.88    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.69/1.88  >>>> Starting back demodulation with 4.
% 1.69/1.88  >>>> Starting back demodulation with 6.
% 1.69/1.88  >>>> Starting back demodulation with 8.
% 1.69/1.88    Following clause subsumed by 9 during input processing: 0 [copy,9,flip.1] greatest_lower_bound(A,B)=greatest_lower_bound(B,A).
% 1.69/1.88    Following clause subsumed by 10 during input processing: 0 [copy,10,flip.1] least_upper_bound(A,B)=least_upper_bound(B,A).
% 1.69/1.88  >>>> Starting back demodulation with 13.
% 1.69/1.88  >>>> Starting back demodulation with 16.
% 1.69/1.88      >> back demodulating 1 with 16.
% 1.69/1.88  
% 1.69/1.88  ----> UNIT CONFLICT at   0.00 sec ----> 38 [binary,37.1,2.1] $F.
% 1.69/1.88  
% 1.69/1.88  Length of proof is 2.  Level of proof is 2.
% 1.69/1.88  
% 1.69/1.88  ---------------- PROOF ----------------
% 1.69/1.88  % SZS status Unsatisfiable
% 1.69/1.88  % SZS output start Refutation
% See solution above
% 1.69/1.88  ------------ end of proof -------------
% 1.69/1.88  
% 1.69/1.88  
% 1.69/1.88  Search stopped by max_proofs option.
% 1.69/1.88  
% 1.69/1.88  
% 1.69/1.88  Search stopped by max_proofs option.
% 1.69/1.88  
% 1.69/1.88  ============ end of search ============
% 1.69/1.88  
% 1.69/1.88  -------------- statistics -------------
% 1.69/1.88  clauses given                  0
% 1.69/1.88  clauses generated              0
% 1.69/1.88  clauses kept                  20
% 1.69/1.88  clauses forward subsumed       3
% 1.69/1.88  clauses back subsumed          0
% 1.69/1.88  Kbytes malloced              976
% 1.69/1.88  
% 1.69/1.88  ----------- times (seconds) -----------
% 1.69/1.88  user CPU time          0.00          (0 hr, 0 min, 0 sec)
% 1.69/1.88  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.69/1.88  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.69/1.88  
% 1.69/1.88  That finishes the proof of the theorem.
% 1.69/1.88  
% 1.69/1.88  Process 14159 finished Wed Jul 27 05:15:37 2022
% 1.69/1.88  Otter interrupted
% 1.69/1.88  PROOF FOUND
%------------------------------------------------------------------------------