TSTP Solution File: GRP125-4.003 by CARINE---0.734

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CARINE---0.734
% Problem  : GRP125-4.003 : TPTP v5.0.0. Bugfixed v1.2.1.
% Transfm  : add_equality
% Format   : carine
% Command  : carine %s t=%d xo=off uct=32000

% Computer : art03.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 2018MB
% OS       : Linux 2.6.26.8-57.fc8
% CPULimit : 300s
% DateTime : Sat Nov 27 21:06:57 EST 2010

% Result   : Unsatisfiable 31.04s
% Output   : Refutation 31.04s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% Command entered:
% /home/graph/tptp/Systems/CARINE---0.734/carine /tmp/SystemOnTPTP3662/GRP/GRP125-4.003+noeq.car t=300 xo=off uct=32000
% CARINE version 0.734 (Dec 2003)
% Initializing tables ... done.
% Parsing ................... done.
% Calculating time slices ... done.
% Building Lookup Tables ... done.
% Looking for a proof at depth = 1 ...
% 	t = 0 secs [nr = 24] [nf = 0] [nu = 0] [ut = 10]
% Looking for a proof at depth = 2 ...
% 	t = 0 secs [nr = 168] [nf = 12] [nu = 90] [ut = 29]
% Looking for a proof at depth = 3 ...
% 	t = 0 secs [nr = 636] [nf = 492] [nu = 216] [ut = 29]
% Looking for a proof at depth = 4 ...
% 	t = 0 secs [nr = 5496] [nf = 972] [nu = 3222] [ut = 29]
% Looking for a proof at depth = 5 ...
% 	t = 0 secs [nr = 23100] [nf = 27804] [nu = 6228] [ut = 29]
% Looking for a proof at depth = 6 ...
% 	t = 1 secs [nr = 165120] [nf = 54636] [nu = 87858] [ut = 29]
% Looking for a proof at depth = 7 ...
% 	t = 3 secs [nr = 769812] [nf = 944892] [nu = 169488] [ut = 29]
% Looking for a proof at depth = 8 ...
% 	t = 15 secs [nr = 4993008] [nf = 1835148] [nu = 2527398] [ut = 29]
% Looking for a proof at depth = 9 ...
% Entering time slice 2
% Updating parameters ... done.
% Looking for a proof at depth = 1 ...
% 	t = 32 secs [nr = 9677072] [nf = 8420432] [nu = 3162421] [ut = 29]
% Looking for a proof at depth = 2 ...
% 	t = 32 secs [nr = 9677306] [nf = 8420444] [nu = 3162547] [ut = 29]
% Looking for a proof at depth = 3 ...
% 	t = 32 secs [nr = 9677834] [nf = 8421032] [nu = 3162673] [ut = 29]
% Looking for a proof at depth = 4 ...
% +================================================+
% |                                                |
% | Congratulations!!! ........ A proof was found. |
% |                                                |
% +================================================+
% Base Clauses and Unit Clauses used in proof:
% ============================================
% Base Clauses:
% -------------
% B0: ~product_3(x1,x0,x3) | ~product_3(x2,x3,x0) | product_3(x0,x1,x2)
% B3: product_3(x0,x0,x0)
% B4: group_element_1(e_1_0())
% B7: ~equalish_2(e_1_0(),e_2_0())
% B13: ~product_3(x0,x1,x3) | ~product_3(x0,x1,x2) | equalish_2(x2,x3)
% B14: ~product_3(x0,x3,x2) | ~product_3(x0,x1,x2) | equalish_2(x1,x3)
% B15: ~product_3(x3,x1,x2) | ~product_3(x0,x1,x2) | equalish_2(x0,x3)
% B16: ~group_element_1(x1) | ~group_element_1(x0) | product_3(x0,x1,e_1_0()) | product_3(x0,x1,e_2_0()) | product_3(x0,x1,e_3_0())
% B17: ~group_element_1(x1) | ~group_element_1(x0) | product_3(x0,e_1_0(),x1) | product_3(x0,e_2_0(),x1) | product_3(x0,e_3_0(),x1)
% Unit Clauses:
% --------------
% U2: < d0 v0 dv0 f0 c1 t1 td1 b > group_element_1(e_2_0())
% U3: < d0 v0 dv0 f0 c1 t1 td1 b > group_element_1(e_3_0())
% U4: < d0 v0 dv0 f0 c2 t2 td1 b > ~equalish_2(e_1_0(),e_2_0())
% U5: < d0 v0 dv0 f0 c2 t2 td1 b > ~equalish_2(e_1_0(),e_3_0())
% U6: < d0 v0 dv0 f0 c2 t2 td1 b > ~equalish_2(e_2_0(),e_1_0())
% U8: < d0 v0 dv0 f0 c2 t2 td1 b > ~equalish_2(e_3_0(),e_1_0())
% U11: < d2 v0 dv0 f0 c3 t3 td1 > ~product_3(e_2_0(),e_2_0(),e_1_0())
% U12: < d2 v0 dv0 f0 c3 t3 td1 > ~product_3(e_3_0(),e_3_0(),e_1_0())
% U17: < d2 v0 dv0 f0 c3 t3 td1 > ~product_3(e_2_0(),e_1_0(),e_2_0())
% U25: < d2 v0 dv0 f0 c3 t3 td1 > ~product_3(e_2_0(),e_1_0(),e_1_0())
% U27: < d2 v0 dv0 f0 c3 t3 td1 > ~product_3(e_3_0(),e_1_0(),e_1_0())
% U30: < d4 v0 dv0 f0 c3 t3 td1 > product_3(e_2_0(),e_1_0(),e_3_0())
% U34: < d4 v0 dv0 f0 c3 t3 td1 > product_3(e_2_0(),e_3_0(),e_1_0())
% U35: < d4 v0 dv0 f0 c3 t3 td1 > product_3(e_3_0(),e_2_0(),e_1_0())
% U38: < d4 v0 dv0 f0 c3 t3 td1 > ~product_3(e_2_0(),e_1_0(),e_3_0())
% --------------- Start of Proof ---------------
% Derivation of unit clause U2:
% group_element_1(e_2_0()) ....... U2
% Derivation of unit clause U3:
% group_element_1(e_3_0()) ....... U3
% Derivation of unit clause U4:
% ~equalish_2(e_1_0(),e_2_0()) ....... U4
% Derivation of unit clause U5:
% ~equalish_2(e_1_0(),e_3_0()) ....... U5
% Derivation of unit clause U6:
% ~equalish_2(e_2_0(),e_1_0()) ....... U6
% Derivation of unit clause U8:
% ~equalish_2(e_3_0(),e_1_0()) ....... U8
% Derivation of unit clause U11:
% product_3(x0,x0,x0) ....... B3
% ~product_3(x0,x1,x3) | ~product_3(x0,x1,x2) | equalish_2(x2,x3) ....... B13
%  ~product_3(x0, x0, x1) | equalish_2(x1, x0) ....... R1 [B3:L0, B13:L0]
%  ~equalish_2(e_1_0(),e_2_0()) ....... U4
%   ~product_3(e_2_0(), e_2_0(), e_1_0()) ....... R2 [R1:L1, U4:L0]
% Derivation of unit clause U12:
% product_3(x0,x0,x0) ....... B3
% ~product_3(x0,x1,x3) | ~product_3(x0,x1,x2) | equalish_2(x2,x3) ....... B13
%  ~product_3(x0, x0, x1) | equalish_2(x1, x0) ....... R1 [B3:L0, B13:L0]
%  ~equalish_2(e_1_0(),e_3_0()) ....... U5
%   ~product_3(e_3_0(), e_3_0(), e_1_0()) ....... R2 [R1:L1, U5:L0]
% Derivation of unit clause U17:
% product_3(x0,x0,x0) ....... B3
% ~product_3(x0,x3,x2) | ~product_3(x0,x1,x2) | equalish_2(x1,x3) ....... B14
%  ~product_3(x0, x1, x0) | equalish_2(x1, x0) ....... R1 [B3:L0, B14:L0]
%  ~equalish_2(e_1_0(),e_2_0()) ....... U4
%   ~product_3(e_2_0(), e_1_0(), e_2_0()) ....... R2 [R1:L1, U4:L0]
% Derivation of unit clause U25:
% product_3(x0,x0,x0) ....... B3
% ~product_3(x3,x1,x2) | ~product_3(x0,x1,x2) | equalish_2(x0,x3) ....... B15
%  ~product_3(x0, x1, x1) | equalish_2(x0, x1) ....... R1 [B3:L0, B15:L0]
%  ~equalish_2(e_2_0(),e_1_0()) ....... U6
%   ~product_3(e_2_0(), e_1_0(), e_1_0()) ....... R2 [R1:L1, U6:L0]
% Derivation of unit clause U27:
% product_3(x0,x0,x0) ....... B3
% ~product_3(x3,x1,x2) | ~product_3(x0,x1,x2) | equalish_2(x0,x3) ....... B15
%  ~product_3(x0, x1, x1) | equalish_2(x0, x1) ....... R1 [B3:L0, B15:L0]
%  ~equalish_2(e_3_0(),e_1_0()) ....... U8
%   ~product_3(e_3_0(), e_1_0(), e_1_0()) ....... R2 [R1:L1, U8:L0]
% Derivation of unit clause U30:
% group_element_1(e_1_0()) ....... B4
% ~group_element_1(x1) | ~group_element_1(x0) | product_3(x0,x1,e_1_0()) | product_3(x0,x1,e_2_0()) | product_3(x0,x1,e_3_0()) ....... B16
%  ~group_element_1(x0) | product_3(x0, e_1_0(), e_1_0()) | product_3(x0, e_1_0(), e_2_0()) | product_3(x0, e_1_0(), e_3_0()) ....... R1 [B4:L0, B16:L0]
%  group_element_1(e_2_0()) ....... U2
%   product_3(e_2_0(), e_1_0(), e_1_0()) | product_3(e_2_0(), e_1_0(), e_2_0()) | product_3(e_2_0(), e_1_0(), e_3_0()) ....... R2 [R1:L0, U2:L0]
%   ~product_3(e_2_0(),e_1_0(),e_1_0()) ....... U25
%    product_3(e_2_0(), e_1_0(), e_2_0()) | product_3(e_2_0(), e_1_0(), e_3_0()) ....... R3 [R2:L0, U25:L0]
%    ~product_3(e_2_0(),e_1_0(),e_2_0()) ....... U17
%     product_3(e_2_0(), e_1_0(), e_3_0()) ....... R4 [R3:L0, U17:L0]
% Derivation of unit clause U34:
% group_element_1(e_1_0()) ....... B4
% ~group_element_1(x1) | ~group_element_1(x0) | product_3(x0,e_1_0(),x1) | product_3(x0,e_2_0(),x1) | product_3(x0,e_3_0(),x1) ....... B17
%  ~group_element_1(x0) | product_3(x0, e_1_0(), e_1_0()) | product_3(x0, e_2_0(), e_1_0()) | product_3(x0, e_3_0(), e_1_0()) ....... R1 [B4:L0, B17:L0]
%  group_element_1(e_2_0()) ....... U2
%   product_3(e_2_0(), e_1_0(), e_1_0()) | product_3(e_2_0(), e_2_0(), e_1_0()) | product_3(e_2_0(), e_3_0(), e_1_0()) ....... R2 [R1:L0, U2:L0]
%   ~product_3(e_2_0(),e_1_0(),e_1_0()) ....... U25
%    product_3(e_2_0(), e_2_0(), e_1_0()) | product_3(e_2_0(), e_3_0(), e_1_0()) ....... R3 [R2:L0, U25:L0]
%    ~product_3(e_2_0(),e_2_0(),e_1_0()) ....... U11
%     product_3(e_2_0(), e_3_0(), e_1_0()) ....... R4 [R3:L0, U11:L0]
% Derivation of unit clause U35:
% group_element_1(e_1_0()) ....... B4
% ~group_element_1(x1) | ~group_element_1(x0) | product_3(x0,e_1_0(),x1) | product_3(x0,e_2_0(),x1) | product_3(x0,e_3_0(),x1) ....... B17
%  ~group_element_1(x0) | product_3(x0, e_1_0(), e_1_0()) | product_3(x0, e_2_0(), e_1_0()) | product_3(x0, e_3_0(), e_1_0()) ....... R1 [B4:L0, B17:L0]
%  group_element_1(e_3_0()) ....... U3
%   product_3(e_3_0(), e_1_0(), e_1_0()) | product_3(e_3_0(), e_2_0(), e_1_0()) | product_3(e_3_0(), e_3_0(), e_1_0()) ....... R2 [R1:L0, U3:L0]
%   ~product_3(e_3_0(),e_1_0(),e_1_0()) ....... U27
%    product_3(e_3_0(), e_2_0(), e_1_0()) | product_3(e_3_0(), e_3_0(), e_1_0()) ....... R3 [R2:L0, U27:L0]
%    ~product_3(e_3_0(),e_3_0(),e_1_0()) ....... U12
%     product_3(e_3_0(), e_2_0(), e_1_0()) ....... R4 [R3:L1, U12:L0]
% Derivation of unit clause U38:
% ~equalish_2(e_1_0(),e_2_0()) ....... B7
% ~product_3(x0,x1,x3) | ~product_3(x0,x1,x2) | equalish_2(x2,x3) ....... B13
%  ~product_3(x0, x1, e_2_0()) | ~product_3(x0, x1, e_1_0()) ....... R1 [B7:L0, B13:L2]
%  ~product_3(x1,x0,x3) | ~product_3(x2,x3,x0) | product_3(x0,x1,x2) ....... B0
%   ~product_3(x0, x1, e_1_0()) | ~product_3(x1, x0, x2) | ~product_3(e_2_0(), x2, x0) ....... R2 [R1:L0, B0:L2]
%   product_3(e_3_0(),e_2_0(),e_1_0()) ....... U35
%    ~product_3(e_2_0(), e_3_0(), x0) | ~product_3(e_2_0(), x0, e_3_0()) ....... R3 [R2:L0, U35:L0]
%    product_3(e_2_0(),e_3_0(),e_1_0()) ....... U34
%     ~product_3(e_2_0(), e_1_0(), e_3_0()) ....... R4 [R3:L0, U34:L0]
% Derivation of the empty clause:
% ~product_3(e_2_0(),e_1_0(),e_3_0()) ....... U38
% product_3(e_2_0(),e_1_0(),e_3_0()) ....... U30
%  [] ....... R1 [U38:L0, U30:L0]
% --------------- End of Proof ---------------
% PROOF FOUND!
% ---------------------------------------------
% |                Statistics                 |
% ---------------------------------------------
% Profile 3: Performance Statistics:
% ==================================
% Total number of generated clauses: 18111394
% 	resolvents: 9690101	factors: 8421293
% Number of unit clauses generated: 3168832
% % unit clauses generated to total clauses generated: 17.50
% Number of unit clauses constructed and retained at depth [x]:
% =============================================================
% [0] = 10	[2] = 19	[4] = 10	
% Total = 39
% Number of generated clauses having [x] literals:
% ------------------------------------------------
% [1] = 3168832	[2] = 10282213	[3] = 4660208	[4] = 141	
% Average size of a generated clause: 3.0
% Number of unit clauses per predicate list:
% ==========================================
% [0] group_element_1	(+)3	(-)0
% [1] equalish_2		(+)1	(-)6
% [2] product_3		(+)10	(-)19
% 			------------------
% 		Total:	(+)14	(-)25
% Total number of unit clauses retained: 39
% Number of clauses skipped because of their length: 17769495
% N base clauses skippped in resolve-with-all-base-clauses
% 	because of the shortest resolvents table: 0
% Number of successful unifications: 18111420
% Number of unification failures: 16579558
% Number of unit to unit unification failures: 188
% N literal unification failure due to lookup root_id table: 18809040
% N base clause resolution failure due to lookup table: 580857
% N UC-BCL resolution dropped due to lookup table: 0
% Max entries in substitution set: 22
% N unit clauses dropped because they exceeded max values: 2364038
% N unit clauses dropped because too much nesting: 0
% N unit clauses not constrcuted because table was full: 0
% N unit clauses dropped because UCFA table was full: 0
% Max number of terms in a unit clause: 3
% Max term depth in a unit clause: 1
% Number of states in UCFA table: 38
% Total number of terms of all unit clauses in table: 104
% Max allowed number of states in UCFA: 80000
% Ratio n states used/total allowed states: 0.00
% Ratio n states used/total unit clauses terms: 0.37
% Number of symbols (columns) in UCFA: 40
% Profile 2: Number of calls to:
% ==============================
% PTUnify() = 34690978
% ConstructUnitClause() = 2364067
% Profile 1: Time spent in:
% =========================
% ConstructUnitClause() : 2.75 secs
% --------------------------------------------------------
% |                                                      |
%   Inferences per sec: 584239
% |                                                      |
% --------------------------------------------------------
% Elapsed time: 32 secs
% CPU time: 31.03 secs
% 
%------------------------------------------------------------------------------