TSTP Solution File: GRP117-1 by CiME---2.01

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CiME---2.01
% Problem  : GRP117-1 : TPTP v6.0.0. Released v1.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : tptp2X_and_run_cime %s

% Computer : n066.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.11.2.el6.x86_64
% CPULimit : 300s
% DateTime : Tue Jun 10 00:22:17 EDT 2014

% Result   : Unsatisfiable 1.55s
% Output   : Refutation 1.55s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : GRP117-1 : TPTP v6.0.0. Released v1.2.0.
% % Command  : tptp2X_and_run_cime %s
% % Computer : n066.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.11.2.el6.x86_64
% % CPULimit : 300
% % DateTime : Fri Jun  6 01:39:43 CDT 2014
% % CPUTime  : 1.55 
% Processing problem /tmp/CiME_21437_n066.star.cs.uiowa.edu
% #verbose 1;
% let F = signature " a,identity : constant;  multiply : 2;";
% let X = vars "X Y Z";
% let Axioms = equations F X "
% multiply(X,multiply(multiply(X,multiply(multiply(X,Y),Z)),multiply(identity,multiply(Z,Z)))) = Y;
% ";
% 
% let s1 = status F "
% a lr_lex;
% identity lr_lex;
% multiply lr_lex;
% ";
% 
% let p1 = precedence F "
% multiply > identity > a";
% 
% let s2 = status F "
% a mul;
% identity mul;
% multiply mul;
% ";
% 
% let p2 = precedence F "
% multiply > identity = a";
% 
% let o_auto = AUTO Axioms;
% 
% let o = LEX o_auto (LEX (ACRPO s1 p1) (ACRPO s2 p2));
% 
% let Conjectures = equations F X " multiply(a,identity) = a;"
% ;
% (*
% let Red_Axioms = normalize_equations Defining_rules Axioms;
% 
% let Red_Conjectures =  normalize_equations Defining_rules Conjectures;
% *)
% #time on;
% 
% let res = prove_conj_by_ordered_completion o Axioms Conjectures;
% 
% #time off;
% 
% 
% let status = if res then "unsatisfiable" else "satisfiable";
% #quit;
% Verbose level is now 1
% 
% F : signature = <signature>
% X : variable_set = <variable set>
% 
% Axioms : (F,X) equations = { multiply(X,multiply(multiply(X,multiply(
% multiply(X,Y),Z)),
% multiply(identity,multiply(Z,Z)))) =
% Y } (1 equation(s))
% s1 : F status = <status>
% p1 : F precedence = <precedence>
% s2 : F status = <status>
% p2 : F precedence = <precedence>
% o_auto : F term_ordering = <term ordering>
% o : F term_ordering = <term ordering>
% Conjectures : (F,X) equations = { multiply(a,identity) = a } (1 equation(s))
% time is now on
% 
% Initializing completion ...
% New rule produced :
% [1]
% multiply(X,multiply(multiply(X,multiply(multiply(X,Y),Z)),multiply(identity,
% multiply(Z,Z)))) ->
% Y
% Current number of equations to process: 0
% Current number of ordered equations: 0
% Current number of rules: 1
% New rule produced :
% [2]
% multiply(X,multiply(multiply(X,multiply(Y,Z)),multiply(identity,multiply(Z,Z))))
% <->
% multiply(multiply(X,multiply(multiply(X,Y),V_3)),multiply(identity,multiply(V_3,V_3)))
% Current number of equations to process: 1
% Current number of ordered equations: 4
% Current number of rules: 2
% New rule produced :
% [3]
% multiply(X,multiply(Y,multiply(identity,multiply(multiply(identity,multiply(Z,Z)),
% multiply(identity,multiply(Z,Z))))))
% <-> multiply(multiply(X,Y),Z)
% Current number of equations to process: 1
% Current number of ordered equations: 3
% Current number of rules: 3
% New rule produced :
% [4]
% multiply(X,multiply(multiply(X,multiply(multiply(X,Y),multiply(identity,
% multiply(multiply(identity,Z),
% multiply(identity,Z))))),Z))
% -> Y
% Current number of equations to process: 1
% Current number of ordered equations: 2
% Current number of rules: 4
% New rule produced :
% [5]
% multiply(multiply(X,Y),Z) <->
% multiply(X,multiply(Y,multiply(identity,multiply(multiply(identity,multiply(Z,Z)),
% multiply(identity,multiply(Z,Z))))))
% Rule
% [4]
% multiply(X,multiply(multiply(X,multiply(multiply(X,Y),multiply(identity,
% multiply(multiply(identity,Z),
% multiply(identity,Z))))),Z))
% -> Y collapsed.
% Current number of equations to process: 2
% Current number of ordered equations: 1
% Current number of rules: 4
% Rule [2]
% multiply(X,multiply(multiply(X,multiply(Y,Z)),multiply(identity,
% multiply(Z,Z)))) <->
% multiply(multiply(X,multiply(multiply(X,Y),V_3)),multiply(identity,
% multiply(V_3,V_3))) is composed into 
% [2]
% multiply(X,multiply(multiply(X,multiply(Y,Z)),multiply(identity,multiply(Z,Z))))
% <->
% multiply(X,multiply(multiply(X,multiply(Y,a)),multiply(identity,multiply(a,a))))
% New rule produced :
% [6]
% multiply(multiply(X,multiply(multiply(X,Y),V_3)),multiply(identity,multiply(V_3,V_3)))
% <->
% multiply(X,multiply(multiply(X,multiply(Y,Z)),multiply(identity,multiply(Z,Z))))
% Rule
% [1]
% multiply(X,multiply(multiply(X,multiply(multiply(X,Y),Z)),multiply(identity,
% multiply(Z,Z)))) ->
% Y collapsed.
% Current number of equations to process: 3
% Current number of ordered equations: 0
% Current number of rules: 4
% New rule produced :
% [7]
% multiply(X,multiply(X,multiply(multiply(X,multiply(Y,Z)),multiply(identity,
% multiply(Z,Z))))) ->
% Y
% Current number of equations to process: 2
% Current number of ordered equations: 0
% Current number of rules: 5
% Rule [2]
% multiply(X,multiply(multiply(X,multiply(Y,Z)),multiply(identity,
% multiply(Z,Z)))) <->
% multiply(X,multiply(multiply(X,multiply(Y,a)),multiply(identity,
% multiply(a,a)))) is composed into 
% [2]
% multiply(X,multiply(multiply(X,multiply(Y,Z)),multiply(identity,multiply(Z,Z))))
% <-> multiply(X,multiply(X,multiply(multiply(Y,a),multiply(a,a))))
% New rule produced :
% [8]
% multiply(X,multiply(multiply(X,multiply(Y,a)),multiply(identity,multiply(a,a))))
% <-> multiply(X,multiply(X,multiply(multiply(Y,Z),multiply(Z,Z))))
% Current number of equations to process: 16
% Current number of ordered equations: 0
% Current number of rules: 6
% New rule produced :
% [9]
% multiply(X,multiply(X,multiply(multiply(Y,Z),multiply(Z,Z)))) <->
% multiply(X,multiply(X,multiply(multiply(Y,a),multiply(a,a))))
% Current number of equations to process: 15
% Current number of ordered equations: 1
% Current number of rules: 7
% New rule produced :
% [10]
% multiply(X,multiply(X,multiply(multiply(Y,a),multiply(a,a)))) <->
% multiply(X,multiply(X,multiply(multiply(Y,Z),multiply(Z,Z))))
% Current number of equations to process: 15
% Current number of ordered equations: 0
% Current number of rules: 8
% New rule produced :
% [11]
% multiply(X,multiply(Y,multiply(identity,multiply(identity,multiply(multiply(Z,Z),
% multiply(Z,Z))))))
% <-> multiply(multiply(X,Y),Z)
% Current number of equations to process: 18
% Current number of ordered equations: 1
% Current number of rules: 9
% New rule produced :
% [12]
% multiply(multiply(X,Y),Z) <->
% multiply(X,multiply(Y,multiply(identity,multiply(identity,multiply(multiply(Z,Z),
% multiply(Z,Z))))))
% Current number of equations to process: 18
% Current number of ordered equations: 0
% Current number of rules: 10
% New rule produced :
% [13]
% multiply(X,multiply(multiply(X,multiply(Y,V_3)),multiply(identity,multiply(V_3,V_3))))
% <-> multiply(multiply(multiply(X,multiply(X,Y)),Z),multiply(Z,Z))
% Current number of equations to process: 22
% Current number of ordered equations: 1
% Current number of rules: 11
% Rule [13]
% multiply(X,multiply(multiply(X,multiply(Y,V_3)),multiply(identity,
% multiply(V_3,V_3)))) <->
% multiply(multiply(multiply(X,multiply(X,Y)),Z),multiply(Z,Z)) is composed into 
% [13]
% multiply(X,multiply(multiply(X,multiply(Y,V_3)),multiply(identity,multiply(V_3,V_3))))
% <->
% multiply(X,multiply(multiply(X,multiply(Y,a)),multiply(identity,multiply(a,a))))
% New rule produced :
% [14]
% multiply(multiply(multiply(X,multiply(X,Y)),Z),multiply(Z,Z)) <->
% multiply(X,multiply(multiply(X,multiply(Y,V_3)),multiply(identity,multiply(V_3,V_3))))
% Current number of equations to process: 22
% Current number of ordered equations: 0
% Current number of rules: 12
% New rule produced :
% [15]
% multiply(Y,multiply(Y,multiply(multiply(multiply(Y,X),a),multiply(a,a)))) ->
% X
% Current number of equations to process: 31
% Current number of ordered equations: 0
% Current number of rules: 13
% New rule produced : [16] multiply(multiply(X,identity),Y) -> multiply(X,Y)
% Current number of equations to process: 41
% Current number of ordered equations: 0
% Current number of rules: 14
% New rule produced :
% [17]
% multiply(X,multiply(X,multiply(multiply(multiply(X,Y),Z),multiply(Z,Z)))) ->
% Y
% Rule
% [15]
% multiply(Y,multiply(Y,multiply(multiply(multiply(Y,X),a),multiply(a,a)))) ->
% X collapsed.
% Current number of equations to process: 40
% Current number of ordered equations: 0
% Current number of rules: 14
% New rule produced :
% [18]
% multiply(X,multiply(X,multiply(X,multiply(multiply(Y,a),multiply(a,a))))) ->
% Y
% Current number of equations to process: 47
% Current number of ordered equations: 0
% Current number of rules: 15
% New rule produced :
% [19]
% multiply(X,multiply(X,multiply(X,multiply(multiply(Y,Z),multiply(Z,Z))))) ->
% Y
% Rule
% [18]
% multiply(X,multiply(X,multiply(X,multiply(multiply(Y,a),multiply(a,a))))) ->
% Y collapsed.
% Current number of equations to process: 52
% Current number of ordered equations: 0
% Current number of rules: 15
% New rule produced :
% [20]
% multiply(X,multiply(multiply(X,multiply(Y,V_3)),multiply(identity,multiply(V_3,V_3))))
% <-> multiply(X,multiply(multiply(multiply(X,Y),Z),multiply(Z,Z)))
% Current number of equations to process: 53
% Current number of ordered equations: 1
% Current number of rules: 16
% Rule [20]
% multiply(X,multiply(multiply(X,multiply(Y,V_3)),multiply(identity,
% multiply(V_3,V_3)))) <->
% multiply(X,multiply(multiply(multiply(X,Y),Z),multiply(Z,Z))) is composed into 
% [20]
% multiply(X,multiply(multiply(X,multiply(Y,V_3)),multiply(identity,multiply(V_3,V_3))))
% <->
% multiply(X,multiply(multiply(X,multiply(Y,a)),multiply(identity,multiply(a,a))))
% New rule produced :
% [21]
% multiply(X,multiply(multiply(multiply(X,Y),Z),multiply(Z,Z))) <->
% multiply(X,multiply(multiply(X,multiply(Y,V_3)),multiply(identity,multiply(V_3,V_3))))
% Rule
% [17]
% multiply(X,multiply(X,multiply(multiply(multiply(X,Y),Z),multiply(Z,Z)))) ->
% Y collapsed.
% Current number of equations to process: 53
% Current number of ordered equations: 0
% Current number of rules: 16
% New rule produced :
% [22]
% multiply(X,multiply(Y,multiply(identity,multiply(identity,multiply(multiply(Z,a),
% multiply(a,a))))))
% <-> multiply(multiply(X,Y),Z)
% Current number of equations to process: 107
% Current number of ordered equations: 1
% Current number of rules: 17
% New rule produced :
% [23]
% multiply(multiply(X,Y),Z) <->
% multiply(X,multiply(Y,multiply(identity,multiply(identity,multiply(multiply(Z,a),
% multiply(a,a))))))
% Current number of equations to process: 107
% Current number of ordered equations: 0
% Current number of rules: 18
% New rule produced :
% [24]
% multiply(X,multiply(Y,multiply(identity,multiply(identity,multiply(multiply(a,Z),
% multiply(Z,Z))))))
% <-> multiply(multiply(X,Y),a)
% Current number of equations to process: 107
% Current number of ordered equations: 1
% Current number of rules: 19
% New rule produced :
% [25]
% multiply(multiply(X,Y),a) <->
% multiply(X,multiply(Y,multiply(identity,multiply(identity,multiply(multiply(a,Z),
% multiply(Z,Z))))))
% Current number of equations to process: 107
% Current number of ordered equations: 0
% Current number of rules: 20
% New rule produced : [26] multiply(X,identity) -> X
% Rule [16] multiply(multiply(X,identity),Y) -> multiply(X,Y) collapsed.
% The conjecture has been reduced. 
% Conjecture is now:
% Trivial
% 
% Current number of equations to process: 221
% Current number of ordered equations: 0
% Current number of rules: 20
% The current conjecture is true and the solution is the identity
% % SZS output start Refutation
% 
% The following 5 rules have been used:
% [1] 
% multiply(X,multiply(multiply(X,multiply(multiply(X,Y),Z)),multiply(identity,
% multiply(Z,Z)))) ->
% Y; trace = in the starting set
% [3] multiply(X,multiply(Y,multiply(identity,multiply(multiply(identity,
% multiply(Z,Z)),multiply(identity,
% multiply(Z,Z))))))
% <-> multiply(multiply(X,Y),Z); trace = Self cp of 1
% [7] multiply(X,multiply(X,multiply(multiply(X,multiply(Y,Z)),multiply(identity,
% multiply(Z,Z)))))
% -> Y; trace = in the starting set
% [16] multiply(multiply(X,identity),Y) -> multiply(X,Y); trace = Cp of 7 and 3
% [26] multiply(X,identity) -> X; trace = Cp of 16 and 7
% % SZS output end Refutation
% All conjectures have been proven
% 
% Execution time: 0.440000 sec
% res : bool = true
% time is now off
% 
% status : string = "unsatisfiable"
% % SZS status Unsatisfiable
% CiME interrupted
% 
% EOF
%------------------------------------------------------------------------------