TSTP Solution File: GRP102-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP102-1 : TPTP v8.1.0. Bugfixed v2.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n020.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:56:03 EDT 2022

% Result   : Unsatisfiable 2.24s 2.46s
% Output   : Refutation 2.24s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   31
%            Number of leaves      :    6
% Syntax   : Number of clauses     :   97 (  88 unt;   0 nHn;  13 RR)
%            Number of literals    :  124 ( 123 equ;  36 neg)
%            Maximal clause size   :    4 (   1 avg)
%            Maximal term depth    :    8 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :   11 (  11 usr;   8 con; 0-2 aty)
%            Number of variables   :  191 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( multiply(inverse(a1),a1) != identity
    | multiply(identity,a2) != a2
    | multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3))
    | multiply(a4,b4) != multiply(b4,a4) ),
    file('GRP102-1.p',unknown),
    [] ).

cnf(2,plain,
    ( multiply(inverse(a1),a1) != identity
    | multiply(identity,a2) != a2
    | multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3))
    | multiply(b4,a4) != multiply(a4,b4) ),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[1])]),
    [iquote('copy,1,flip.4')] ).

cnf(3,axiom,
    A = A,
    file('GRP102-1.p',unknown),
    [] ).

cnf(4,axiom,
    double_divide(double_divide(A,double_divide(double_divide(double_divide(B,A),C),double_divide(B,identity))),double_divide(identity,identity)) = C,
    file('GRP102-1.p',unknown),
    [] ).

cnf(7,axiom,
    multiply(A,B) = double_divide(double_divide(B,A),identity),
    file('GRP102-1.p',unknown),
    [] ).

cnf(9,axiom,
    inverse(A) = double_divide(A,identity),
    file('GRP102-1.p',unknown),
    [] ).

cnf(10,axiom,
    identity = double_divide(A,inverse(A)),
    file('GRP102-1.p',unknown),
    [] ).

cnf(12,plain,
    double_divide(A,double_divide(A,identity)) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(copy,[status(thm)],[10]),9])]),
    [iquote('copy,10,demod,9,flip.1')] ).

cnf(13,plain,
    ( double_divide(identity,identity) != identity
    | double_divide(double_divide(a2,identity),identity) != a2
    | double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity) != double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity)
    | double_divide(double_divide(b4,a4),identity) != double_divide(double_divide(a4,b4),identity) ),
    inference(flip,[status(thm),theory(equality)],[inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[2]),9,7,12,7,7,7,7,7,7,7])])]),
    [iquote('back_demod,2,demod,9,7,12,7,7,7,7,7,7,7,flip.3,flip.4')] ).

cnf(14,plain,
    double_divide(double_divide(double_divide(A,identity),double_divide(double_divide(identity,B),double_divide(A,identity))),double_divide(identity,identity)) = B,
    inference(para_into,[status(thm),theory(equality)],[4,12]),
    [iquote('para_into,4.1.1.1.2.1.1,11.1.1')] ).

cnf(18,plain,
    double_divide(double_divide(A,double_divide(identity,double_divide(B,identity))),double_divide(identity,identity)) = double_divide(double_divide(B,A),identity),
    inference(para_into,[status(thm),theory(equality)],[4,12]),
    [iquote('para_into,4.1.1.1.2.1,11.1.1')] ).

cnf(21,plain,
    double_divide(double_divide(double_divide(A,double_divide(identity,B)),C),double_divide(A,identity)) = double_divide(double_divide(B,C),double_divide(identity,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[4,4])]),
    [iquote('para_into,4.1.1.1.2,4.1.1,flip.1')] ).

cnf(26,plain,
    double_divide(double_divide(double_divide(double_divide(identity,A),identity),identity),double_divide(identity,identity)) = A,
    inference(para_into,[status(thm),theory(equality)],[14,12]),
    [iquote('para_into,14.1.1.1.2,11.1.1')] ).

cnf(34,plain,
    double_divide(double_divide(double_divide(identity,identity),identity),double_divide(identity,identity)) = double_divide(identity,identity),
    inference(para_into,[status(thm),theory(equality)],[26,12]),
    [iquote('para_into,26.1.1.1.1.1,11.1.1')] ).

cnf(38,plain,
    double_divide(double_divide(double_divide(identity,identity),double_divide(double_divide(A,B),double_divide(double_divide(double_divide(double_divide(identity,A),identity),identity),identity))),double_divide(identity,identity)) = B,
    inference(para_from,[status(thm),theory(equality)],[26,4]),
    [iquote('para_from,26.1.1,4.1.1.1.2.1.1')] ).

cnf(41,plain,
    double_divide(double_divide(identity,identity),double_divide(identity,identity)) = double_divide(identity,identity),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[34,4]),12]),
    [iquote('para_from,34.1.1,4.1.1.1.2.1,demod,12')] ).

cnf(45,plain,
    double_divide(identity,identity) = identity,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[41,14]),41,41]),
    [iquote('para_from,40.1.1,14.1.1.1.2,demod,41,41')] ).

cnf(48,plain,
    double_divide(double_divide(identity,double_divide(double_divide(A,B),double_divide(double_divide(double_divide(double_divide(identity,A),identity),identity),identity))),identity) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[38]),45,45]),
    [iquote('back_demod,38,demod,45,45')] ).

cnf(59,plain,
    double_divide(double_divide(double_divide(double_divide(identity,A),identity),identity),identity) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[26]),45]),
    [iquote('back_demod,26,demod,45')] ).

cnf(63,plain,
    double_divide(double_divide(double_divide(A,double_divide(identity,B)),C),double_divide(A,identity)) = double_divide(double_divide(B,C),identity),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[21]),45]),
    [iquote('back_demod,21,demod,45')] ).

cnf(67,plain,
    double_divide(double_divide(A,double_divide(identity,double_divide(B,identity))),identity) = double_divide(double_divide(B,A),identity),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[18]),45]),
    [iquote('back_demod,18,demod,45')] ).

cnf(72,plain,
    ( identity != identity
    | double_divide(double_divide(a2,identity),identity) != a2
    | double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity) != double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity)
    | double_divide(double_divide(b4,a4),identity) != double_divide(double_divide(a4,b4),identity) ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[13]),45]),
    [iquote('back_demod,13,demod,45')] ).

cnf(73,plain,
    double_divide(double_divide(A,double_divide(double_divide(double_divide(B,A),C),double_divide(B,identity))),identity) = C,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[4]),45]),
    [iquote('back_demod,4,demod,45')] ).

cnf(75,plain,
    double_divide(double_divide(identity,double_divide(double_divide(A,B),A)),identity) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[48]),59]),
    [iquote('back_demod,48,demod,59')] ).

cnf(81,plain,
    double_divide(double_divide(identity,double_divide(identity,A)),identity) = double_divide(A,identity),
    inference(para_into,[status(thm),theory(equality)],[75,12]),
    [iquote('para_into,75.1.1.1.2.1,11.1.1')] ).

cnf(83,plain,
    double_divide(double_divide(identity,A),identity) = double_divide(double_divide(B,A),B),
    inference(para_into,[status(thm),theory(equality)],[75,75]),
    [iquote('para_into,75.1.1.1.2,75.1.1')] ).

cnf(85,plain,
    double_divide(double_divide(A,identity),identity) = double_divide(double_divide(B,A),B),
    inference(para_from,[status(thm),theory(equality)],[75,59]),
    [iquote('para_from,75.1.1,58.1.1.1.1')] ).

cnf(86,plain,
    double_divide(double_divide(identity,double_divide(double_divide(A,B),A)),B) = identity,
    inference(para_from,[status(thm),theory(equality)],[75,12]),
    [iquote('para_from,75.1.1,11.1.1.2')] ).

cnf(88,plain,
    double_divide(double_divide(A,B),A) = double_divide(double_divide(B,identity),identity),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[85])]),
    [iquote('copy,85,flip.1')] ).

cnf(96,plain,
    double_divide(double_divide(double_divide(A,identity),identity),identity) = double_divide(identity,A),
    inference(para_from,[status(thm),theory(equality)],[81,59]),
    [iquote('para_from,81.1.1,58.1.1.1.1')] ).

cnf(102,plain,
    double_divide(identity,double_divide(identity,A)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[59]),96]),
    [iquote('back_demod,58,demod,96')] ).

cnf(109,plain,
    double_divide(double_divide(A,identity),A) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[83,45]),45])]),
    [iquote('para_into,83.1.1.1,44.1.1,demod,45,flip.1')] ).

cnf(112,plain,
    double_divide(double_divide(A,double_divide(double_divide(B,C),B)),A) = C,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[83,75])]),
    [iquote('para_into,83.1.1,75.1.1,flip.1')] ).

cnf(139,plain,
    double_divide(double_divide(A,identity),identity) = double_divide(identity,double_divide(A,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[88,109])]),
    [iquote('para_into,88.1.1.1,109.1.1,flip.1')] ).

cnf(142,plain,
    double_divide(double_divide(identity,double_divide(A,identity)),double_divide(B,A)) = double_divide(identity,double_divide(B,identity)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[88,88]),139,139]),
    [iquote('para_into,88.1.1.1,88.1.1,demod,139,139')] ).

cnf(144,plain,
    double_divide(double_divide(A,B),A) = double_divide(identity,double_divide(B,identity)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[88,86]),102,139]),
    [iquote('para_into,88.1.1.1,86.1.1,demod,102,139')] ).

cnf(156,plain,
    double_divide(A,identity) = double_divide(identity,A),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[96]),139,144,139,102]),
    [iquote('back_demod,95,demod,139,144,139,102')] ).

cnf(157,plain,
    ( identity != identity
    | double_divide(identity,double_divide(a2,identity)) != a2
    | double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity) != double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity)
    | double_divide(double_divide(b4,a4),identity) != double_divide(double_divide(a4,b4),identity) ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[72]),139]),
    [iquote('back_demod,72,demod,139')] ).

cnf(160,plain,
    double_divide(identity,double_divide(A,identity)) = double_divide(double_divide(identity,double_divide(B,identity)),double_divide(A,B)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[142])]),
    [iquote('copy,142,flip.1')] ).

cnf(164,plain,
    double_divide(identity,double_divide(A,identity)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[112]),144,144,144,139,102]),
    [iquote('back_demod,112,demod,144,144,144,139,102')] ).

cnf(165,plain,
    double_divide(double_divide(identity,A),A) = identity,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[86]),144,164]),
    [iquote('back_demod,86,demod,144,164')] ).

cnf(172,plain,
    double_divide(A,double_divide(B,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[160])]),164,164]),
    [iquote('copy,160,flip.1,demod,164,164')] ).

cnf(175,plain,
    ( identity != identity
    | a2 != a2
    | double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity) != double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity)
    | double_divide(double_divide(b4,a4),identity) != double_divide(double_divide(a4,b4),identity) ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[157]),172]),
    [iquote('back_demod,157,demod,172')] ).

cnf(181,plain,
    double_divide(double_divide(A,B),A) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[144]),172]),
    [iquote('back_demod,143,demod,172')] ).

cnf(182,plain,
    double_divide(double_divide(A,B),identity) = double_divide(double_divide(B,A),identity),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[67]),172]),
    [iquote('back_demod,67,demod,172')] ).

cnf(195,plain,
    double_divide(double_divide(identity,A),double_divide(B,identity)) = double_divide(double_divide(B,A),identity),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[165,63]),102]),
    [iquote('para_from,165.1.1,63.1.1.1.1,demod,102')] ).

cnf(196,plain,
    double_divide(double_divide(A,B),identity) = double_divide(double_divide(identity,B),double_divide(A,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[195])]),
    [iquote('copy,195,flip.1')] ).

cnf(199,plain,
    double_divide(double_divide(A,identity),identity) = A,
    inference(para_into,[status(thm),theory(equality)],[172,12]),
    [iquote('para_into,171.1.1.2,11.1.1')] ).

cnf(205,plain,
    double_divide(double_divide(double_divide(A,B),C),double_divide(A,identity)) = double_divide(double_divide(double_divide(B,identity),C),identity),
    inference(para_from,[status(thm),theory(equality)],[172,63]),
    [iquote('para_from,171.1.1,63.1.1.1.1.2')] ).

cnf(206,plain,
    double_divide(double_divide(double_divide(A,identity),B),identity) = double_divide(double_divide(double_divide(C,A),B),double_divide(C,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[205])]),
    [iquote('copy,205,flip.1')] ).

cnf(210,plain,
    double_divide(double_divide(A,B),double_divide(double_divide(double_divide(identity,C),A),identity)) = double_divide(double_divide(C,B),identity),
    inference(para_from,[status(thm),theory(equality)],[181,63]),
    [iquote('para_from,180.1.1,63.1.1.1.1')] ).

cnf(214,plain,
    double_divide(double_divide(A,B),identity) = double_divide(double_divide(C,B),double_divide(double_divide(double_divide(identity,A),C),identity)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[210])]),
    [iquote('copy,210,flip.1')] ).

cnf(267,plain,
    double_divide(A,B) = double_divide(B,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[182,182]),199,181]),
    [iquote('para_into,182.1.1.1,182.1.1,demod,199,181')] ).

cnf(275,plain,
    double_divide(double_divide(A,B),identity) = double_divide(identity,double_divide(B,A)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[182,156])]),
    [iquote('para_into,182.1.1,156.1.1,flip.1')] ).

cnf(312,plain,
    double_divide(double_divide(A,B),double_divide(identity,double_divide(A,double_divide(identity,C)))) = double_divide(identity,double_divide(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[214]),275,275])]),
    [iquote('back_demod,214,demod,275,275,flip.1')] ).

cnf(321,plain,
    double_divide(double_divide(double_divide(A,B),C),double_divide(A,identity)) = double_divide(identity,double_divide(C,double_divide(B,identity))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[206]),275])]),
    [iquote('back_demod,206,demod,275,flip.1')] ).

cnf(326,plain,
    double_divide(double_divide(identity,A),double_divide(B,identity)) = double_divide(identity,double_divide(A,B)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[196]),275])]),
    [iquote('back_demod,196,demod,275,flip.1')] ).

cnf(336,plain,
    double_divide(identity,double_divide(A,B)) = double_divide(identity,double_divide(B,A)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[182]),275,275]),
    [iquote('back_demod,182,demod,275,275')] ).

cnf(341,plain,
    ( identity != identity
    | a2 != a2
    | double_divide(identity,double_divide(double_divide(identity,double_divide(a3,b3)),c3)) != double_divide(identity,double_divide(a3,double_divide(identity,double_divide(b3,c3))))
    | double_divide(identity,double_divide(b4,a4)) != double_divide(identity,double_divide(a4,b4)) ),
    inference(flip,[status(thm),theory(equality)],[inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[175]),275,275,275,275,275,275])])]),
    [iquote('back_demod,175,demod,275,275,275,275,275,275,flip.3,flip.4')] ).

cnf(344,plain,
    double_divide(identity,double_divide(double_divide(identity,double_divide(A,double_divide(B,identity))),B)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[73]),321,275]),
    [iquote('back_demod,73,demod,321,275')] ).

cnf(353,plain,
    double_divide(A,double_divide(A,B)) = B,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[267,181])]),
    [iquote('para_into,267.1.1,180.1.1,flip.1')] ).

cnf(354,plain,
    double_divide(double_divide(A,B),B) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[267,172])]),
    [iquote('para_into,267.1.1,171.1.1,flip.1')] ).

cnf(356,plain,
    double_divide(double_divide(A,B),double_divide(identity,double_divide(B,A))) = identity,
    inference(para_from,[status(thm),theory(equality)],[275,353]),
    [iquote('para_from,274.1.1,352.1.1.2')] ).

cnf(406,plain,
    double_divide(A,double_divide(B,identity)) = double_divide(identity,double_divide(double_divide(identity,A),B)),
    inference(para_into,[status(thm),theory(equality)],[326,353]),
    [iquote('para_into,326.1.1.1,352.1.1')] ).

cnf(416,plain,
    double_divide(double_divide(identity,A),B) = double_divide(identity,double_divide(A,double_divide(identity,B))),
    inference(para_into,[status(thm),theory(equality)],[326,181]),
    [iquote('para_into,326.1.1.2,180.1.1')] ).

cnf(418,plain,
    double_divide(A,double_divide(identity,B)) = double_divide(A,double_divide(B,identity)),
    inference(demod,[status(thm),theory(equality)],[inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[406])]),416,353]),
    [iquote('copy,406,flip.1,demod,416,353')] ).

cnf(429,plain,
    double_divide(A,double_divide(B,identity)) = double_divide(A,double_divide(identity,B)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[406]),416,353]),
    [iquote('back_demod,406,demod,416,353')] ).

cnf(434,plain,
    double_divide(double_divide(A,double_divide(B,identity)),double_divide(identity,B)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[344]),416,353]),
    [iquote('back_demod,344,demod,416,353')] ).

cnf(436,plain,
    ( identity != identity
    | a2 != a2
    | double_divide(double_divide(a3,b3),double_divide(identity,c3)) != double_divide(identity,double_divide(a3,double_divide(identity,double_divide(b3,c3))))
    | double_divide(identity,double_divide(b4,a4)) != double_divide(identity,double_divide(a4,b4)) ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[341]),416,353]),
    [iquote('back_demod,341,demod,416,353')] ).

cnf(446,plain,
    double_divide(double_divide(A,double_divide(B,identity)),double_divide(B,double_divide(identity,A))) = identity,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[418,356]),416,353]),
    [iquote('para_from,418.1.1,356.1.1.1,demod,416,353')] ).

cnf(448,plain,
    double_divide(identity,double_divide(A,double_divide(B,identity))) = double_divide(B,double_divide(identity,A)),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[418,336]),416,353]),
    [iquote('para_from,418.1.1,336.1.1.2,demod,416,353')] ).

cnf(450,plain,
    double_divide(identity,double_divide(double_divide(A,identity),B)) = double_divide(A,double_divide(identity,B)),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[418,275]),275,416,353]),
    [iquote('para_from,418.1.1,274.1.1.1,demod,275,416,353')] ).

cnf(469,plain,
    double_divide(identity,double_divide(A,double_divide(identity,B))) = double_divide(B,double_divide(identity,A)),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[429,336]),450]),
    [iquote('para_from,429.1.1,336.1.1.2,demod,450')] ).

cnf(475,plain,
    double_divide(double_divide(A,double_divide(identity,double_divide(B,C))),double_divide(identity,double_divide(C,B))) = A,
    inference(para_into,[status(thm),theory(equality)],[434,275]),
    [iquote('para_into,434.1.1.1.2,274.1.1')] ).

cnf(538,plain,
    double_divide(A,double_divide(identity,double_divide(B,double_divide(identity,A)))) = double_divide(identity,B),
    inference(para_from,[status(thm),theory(equality)],[416,172]),
    [iquote('para_from,415.1.1,171.1.1.2')] ).

cnf(714,plain,
    double_divide(double_divide(A,double_divide(identity,B)),C) = double_divide(identity,double_divide(double_divide(B,double_divide(identity,A)),double_divide(identity,C))),
    inference(para_from,[status(thm),theory(equality)],[469,416]),
    [iquote('para_from,469.1.1,415.1.1.1')] ).

cnf(723,plain,
    double_divide(identity,double_divide(double_divide(A,double_divide(identity,B)),double_divide(identity,C))) = double_divide(double_divide(B,double_divide(identity,A)),C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[714])]),
    [iquote('copy,714,flip.1')] ).

cnf(824,plain,
    double_divide(double_divide(A,double_divide(identity,B)),double_divide(identity,C)) = double_divide(identity,double_divide(A,double_divide(B,double_divide(identity,C)))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[312,538]),416,353,416,353])]),
    [iquote('para_into,312.1.1.1,538.1.1,demod,416,353,416,353,flip.1')] ).

cnf(829,plain,
    double_divide(identity,double_divide(double_divide(A,double_divide(identity,B)),C)) = double_divide(identity,double_divide(B,double_divide(A,double_divide(identity,C)))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[312,469]),353,824])]),
    [iquote('para_into,312.1.1.1,469.1.1,demod,353,824,flip.1')] ).

cnf(831,plain,
    double_divide(identity,double_divide(double_divide(A,double_divide(B,identity)),C)) = double_divide(identity,double_divide(B,double_divide(A,double_divide(identity,C)))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[312,448]),353,824])]),
    [iquote('para_into,312.1.1.1,448.1.1,demod,353,824,flip.1')] ).

cnf(832,plain,
    double_divide(A,double_divide(B,C)) = double_divide(identity,double_divide(B,double_divide(A,double_divide(identity,C)))),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[312,446]),831,353,353,829]),
    [iquote('para_into,312.1.1.1,446.1.1,demod,831,353,353,829')] ).

cnf(841,plain,
    double_divide(identity,double_divide(double_divide(A,B),C)) = double_divide(B,double_divide(identity,double_divide(A,double_divide(identity,C)))),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[312,353])]),
    [iquote('para_into,312.1.1.1,352.1.1,flip.1')] ).

cnf(872,plain,
    double_divide(double_divide(A,double_divide(identity,B)),C) = double_divide(B,double_divide(A,double_divide(identity,C))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[723]),824,353])]),
    [iquote('back_demod,723,demod,824,353,flip.1')] ).

cnf(894,plain,
    double_divide(double_divide(A,B),double_divide(C,double_divide(B,A))) = C,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[475]),872,353]),
    [iquote('back_demod,475,demod,872,353')] ).

cnf(999,plain,
    double_divide(double_divide(A,B),C) = double_divide(C,double_divide(B,A)),
    inference(para_into,[status(thm),theory(equality)],[894,354]),
    [iquote('para_into,894.1.1.2,354.1.1')] ).

cnf(1000,plain,
    double_divide(double_divide(A,B),double_divide(double_divide(B,A),C)) = C,
    inference(para_into,[status(thm),theory(equality)],[894,267]),
    [iquote('para_into,894.1.1.2,267.1.1')] ).

cnf(1002,plain,
    double_divide(double_divide(A,B),C) = double_divide(double_divide(B,A),C),
    inference(para_into,[status(thm),theory(equality)],[894,181]),
    [iquote('para_into,894.1.1.2,180.1.1')] ).

cnf(1005,plain,
    double_divide(A,double_divide(B,C)) = double_divide(double_divide(C,B),A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[999])]),
    [iquote('copy,999,flip.1')] ).

cnf(1006,plain,
    double_divide(A,double_divide(B,C)) = double_divide(A,double_divide(C,B)),
    inference(para_from,[status(thm),theory(equality)],[894,181]),
    [iquote('para_from,894.1.1,180.1.1.1')] ).

cnf(1042,plain,
    double_divide(double_divide(A,B),double_divide(identity,double_divide(C,D))) = double_divide(identity,double_divide(B,double_divide(identity,double_divide(A,double_divide(C,D))))),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[321,1000]),275,275]),
    [iquote('para_into,320.1.1.1.1,1000.1.1,demod,275,275')] ).

cnf(1047,plain,
    double_divide(double_divide(A,B),double_divide(C,identity)) = double_divide(identity,double_divide(B,double_divide(identity,double_divide(A,C)))),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[321,353]),275]),
    [iquote('para_into,320.1.1.1.1,352.1.1,demod,275')] ).

cnf(1089,plain,
    double_divide(double_divide(double_divide(A,B),C),D) = double_divide(double_divide(double_divide(B,A),C),D),
    inference(para_from,[status(thm),theory(equality)],[1005,1002]),
    [iquote('para_from,1005.1.1,1002.1.1.1')] ).

cnf(1106,plain,
    ( identity != identity
    | a2 != a2
    | double_divide(identity,double_divide(a3,double_divide(identity,double_divide(b3,c3)))) != double_divide(identity,double_divide(b3,double_divide(identity,double_divide(a3,c3))))
    | double_divide(identity,double_divide(b4,a4)) != double_divide(identity,double_divide(a4,b4)) ),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[436,267]),1047])]),
    [iquote('para_into,436.3.1.2,267.1.1,demod,1047,flip.3')] ).

cnf(1203,plain,
    double_divide(double_divide(double_divide(A,B),C),D) = double_divide(B,double_divide(C,double_divide(A,D))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[832,1002]),416,841,353,1042,1042,353,353])]),
    [iquote('para_from,832.1.1,1002.1.1.1,demod,416,841,353,1042,1042,353,353,flip.1')] ).

cnf(1221,plain,
    double_divide(A,double_divide(B,double_divide(C,D))) = double_divide(C,double_divide(B,double_divide(A,D))),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1089]),1203,1203]),
    [iquote('back_demod,1089,demod,1203,1203')] ).

cnf(1868,plain,
    double_divide(A,double_divide(B,double_divide(C,double_divide(D,E)))) = double_divide(C,double_divide(D,double_divide(A,double_divide(B,E)))),
    inference(para_into,[status(thm),theory(equality)],[1221,1221]),
    [iquote('para_into,1221.1.1.2,1221.1.1')] ).

cnf(4010,plain,
    $false,
    inference(hyper,[status(thm)],[1868,1106,3,3,1006]),
    [iquote('hyper,1868,1106,3,3,1006')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : GRP102-1 : TPTP v8.1.0. Bugfixed v2.7.0.
% 0.11/0.12  % Command  : otter-tptp-script %s
% 0.13/0.33  % Computer : n020.cluster.edu
% 0.13/0.33  % Model    : x86_64 x86_64
% 0.13/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.33  % Memory   : 8042.1875MB
% 0.13/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.33  % CPULimit : 300
% 0.13/0.33  % WCLimit  : 300
% 0.13/0.33  % DateTime : Wed Jul 27 05:26:08 EDT 2022
% 0.13/0.33  % CPUTime  : 
% 2.24/2.46  ----- Otter 3.3f, August 2004 -----
% 2.24/2.46  The process was started by sandbox2 on n020.cluster.edu,
% 2.24/2.46  Wed Jul 27 05:26:08 2022
% 2.24/2.46  The command was "./otter".  The process ID is 23401.
% 2.24/2.46  
% 2.24/2.46  set(prolog_style_variables).
% 2.24/2.46  set(auto).
% 2.24/2.46     dependent: set(auto1).
% 2.24/2.46     dependent: set(process_input).
% 2.24/2.46     dependent: clear(print_kept).
% 2.24/2.46     dependent: clear(print_new_demod).
% 2.24/2.46     dependent: clear(print_back_demod).
% 2.24/2.46     dependent: clear(print_back_sub).
% 2.24/2.46     dependent: set(control_memory).
% 2.24/2.46     dependent: assign(max_mem, 12000).
% 2.24/2.46     dependent: assign(pick_given_ratio, 4).
% 2.24/2.46     dependent: assign(stats_level, 1).
% 2.24/2.46     dependent: assign(max_seconds, 10800).
% 2.24/2.46  clear(print_given).
% 2.24/2.46  
% 2.24/2.46  list(usable).
% 2.24/2.46  0 [] A=A.
% 2.24/2.46  0 [] double_divide(double_divide(X,double_divide(double_divide(double_divide(Y,X),Z),double_divide(Y,identity))),double_divide(identity,identity))=Z.
% 2.24/2.46  0 [] multiply(X,Y)=double_divide(double_divide(Y,X),identity).
% 2.24/2.46  0 [] inverse(X)=double_divide(X,identity).
% 2.24/2.46  0 [] identity=double_divide(X,inverse(X)).
% 2.24/2.46  0 [] multiply(inverse(a1),a1)!=identity|multiply(identity,a2)!=a2|multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3))|multiply(a4,b4)!=multiply(b4,a4).
% 2.24/2.46  end_of_list.
% 2.24/2.46  
% 2.24/2.46  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=4.
% 2.24/2.46  
% 2.24/2.46  This is a Horn set with equality.  The strategy will be
% 2.24/2.46  Knuth-Bendix and hyper_res, with positive clauses in
% 2.24/2.46  sos and nonpositive clauses in usable.
% 2.24/2.46  
% 2.24/2.46     dependent: set(knuth_bendix).
% 2.24/2.46     dependent: set(anl_eq).
% 2.24/2.46     dependent: set(para_from).
% 2.24/2.46     dependent: set(para_into).
% 2.24/2.46     dependent: clear(para_from_right).
% 2.24/2.46     dependent: clear(para_into_right).
% 2.24/2.46     dependent: set(para_from_vars).
% 2.24/2.46     dependent: set(eq_units_both_ways).
% 2.24/2.46     dependent: set(dynamic_demod_all).
% 2.24/2.46     dependent: set(dynamic_demod).
% 2.24/2.46     dependent: set(order_eq).
% 2.24/2.46     dependent: set(back_demod).
% 2.24/2.46     dependent: set(lrpo).
% 2.24/2.46     dependent: set(hyper_res).
% 2.24/2.46     dependent: clear(order_hyper).
% 2.24/2.46  
% 2.24/2.46  ------------> process usable:
% 2.24/2.46  ** KEPT (pick-wt=29): 2 [copy,1,flip.4] multiply(inverse(a1),a1)!=identity|multiply(identity,a2)!=a2|multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3))|multiply(b4,a4)!=multiply(a4,b4).
% 2.24/2.46  
% 2.24/2.46  ------------> process sos:
% 2.24/2.46  ** KEPT (pick-wt=3): 3 [] A=A.
% 2.24/2.46  ** KEPT (pick-wt=17): 4 [] double_divide(double_divide(A,double_divide(double_divide(double_divide(B,A),C),double_divide(B,identity))),double_divide(identity,identity))=C.
% 2.24/2.46  ---> New Demodulator: 5 [new_demod,4] double_divide(double_divide(A,double_divide(double_divide(double_divide(B,A),C),double_divide(B,identity))),double_divide(identity,identity))=C.
% 2.24/2.46  ** KEPT (pick-wt=9): 6 [] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 2.24/2.46  ---> New Demodulator: 7 [new_demod,6] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 2.24/2.46  ** KEPT (pick-wt=6): 8 [] inverse(A)=double_divide(A,identity).
% 2.24/2.46  ---> New Demodulator: 9 [new_demod,8] inverse(A)=double_divide(A,identity).
% 2.24/2.46  ** KEPT (pick-wt=7): 11 [copy,10,demod,9,flip.1] double_divide(A,double_divide(A,identity))=identity.
% 2.24/2.46  ---> New Demodulator: 12 [new_demod,11] double_divide(A,double_divide(A,identity))=identity.
% 2.24/2.46    Following clause subsumed by 3 during input processing: 0 [copy,3,flip.1] A=A.
% 2.24/2.46  >>>> Starting back demodulation with 5.
% 2.24/2.46  >>>> Starting back demodulation with 7.
% 2.24/2.46      >> back demodulating 2 with 7.
% 2.24/2.46  >>>> Starting back demodulation with 9.
% 2.24/2.46  >>>> Starting back demodulation with 12.
% 2.24/2.46  
% 2.24/2.46  ======= end of input processing =======
% 2.24/2.46  
% 2.24/2.46  =========== start of search ===========
% 2.24/2.46  
% 2.24/2.46  
% 2.24/2.46  Resetting weight limit to 19.
% 2.24/2.46  
% 2.24/2.46  
% 2.24/2.46  Resetting weight limit to 19.
% 2.24/2.46  
% 2.24/2.46  sos_size=2026
% 2.24/2.46  
% 2.24/2.46  -------- PROOF -------- 
% 2.24/2.46  
% 2.24/2.46  -----> EMPTY CLAUSE at   0.44 sec ----> 4010 [hyper,1868,1106,3,3,1006] $F.
% 2.24/2.46  
% 2.24/2.46  Length of proof is 90.  Level of proof is 30.
% 2.24/2.46  
% 2.24/2.46  ---------------- PROOF ----------------
% 2.24/2.46  % SZS status Unsatisfiable
% 2.24/2.46  % SZS output start Refutation
% See solution above
% 2.24/2.46  ------------ end of proof -------------
% 2.24/2.46  
% 2.24/2.46  
% 2.24/2.46  Search stopped by max_proofs option.
% 2.24/2.46  
% 2.24/2.46  
% 2.24/2.46  Search stopped by max_proofs option.
% 2.24/2.46  
% 2.24/2.46  ============ end of search ============
% 2.24/2.46  
% 2.24/2.46  -------------- statistics -------------
% 2.24/2.46  clauses given                204
% 2.24/2.46  clauses generated          37789
% 2.24/2.46  clauses kept                3348
% 2.24/2.46  clauses forward subsumed   30743
% 2.24/2.46  clauses back subsumed        441
% 2.24/2.46  Kbytes malloced             4882
% 2.24/2.46  
% 2.24/2.46  ----------- times (seconds) -----------
% 2.24/2.46  user CPU time          0.44          (0 hr, 0 min, 0 sec)
% 2.24/2.46  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 2.24/2.46  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 2.24/2.46  
% 2.24/2.46  That finishes the proof of the theorem.
% 2.24/2.46  
% 2.24/2.46  Process 23401 finished Wed Jul 27 05:26:10 2022
% 2.24/2.46  Otter interrupted
% 2.24/2.46  PROOF FOUND
%------------------------------------------------------------------------------