TSTP Solution File: GRP094-1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : GRP094-1 : TPTP v8.1.2. Bugfixed v2.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n025.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 01:16:57 EDT 2023

% Result   : Unsatisfiable 0.20s 0.40s
% Output   : Proof 0.20s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : GRP094-1 : TPTP v8.1.2. Bugfixed v2.7.0.
% 0.00/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.12/0.34  % Computer : n025.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 300
% 0.12/0.34  % DateTime : Tue Aug 29 01:50:39 EDT 2023
% 0.12/0.34  % CPUTime  : 
% 0.20/0.40  Command-line arguments: --no-flatten-goal
% 0.20/0.40  
% 0.20/0.40  % SZS status Unsatisfiable
% 0.20/0.40  
% 0.20/0.41  % SZS output start Proof
% 0.20/0.41  Take the following subset of the input axioms:
% 0.20/0.41    fof(identity, axiom, ![X]: identity=divide(X, X)).
% 0.20/0.41    fof(inverse, axiom, ![X2]: inverse(X2)=divide(identity, X2)).
% 0.20/0.41    fof(multiply, axiom, ![Y, X2]: multiply(X2, Y)=divide(X2, divide(identity, Y))).
% 0.20/0.41    fof(prove_these_axioms, negated_conjecture, multiply(inverse(a1), a1)!=multiply(inverse(b1), b1) | (multiply(multiply(inverse(b2), b2), a2)!=a2 | (multiply(multiply(a3, b3), c3)!=multiply(a3, multiply(b3, c3)) | multiply(a4, b4)!=multiply(b4, a4)))).
% 0.20/0.41    fof(single_axiom, axiom, ![Z, X2, Y2]: divide(divide(identity, divide(X2, Y2)), divide(divide(Y2, Z), X2))=Z).
% 0.20/0.41  
% 0.20/0.41  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.20/0.41  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.20/0.41  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.20/0.41    fresh(y, y, x1...xn) = u
% 0.20/0.41    C => fresh(s, t, x1...xn) = v
% 0.20/0.41  where fresh is a fresh function symbol and x1..xn are the free
% 0.20/0.41  variables of u and v.
% 0.20/0.41  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.20/0.41  input problem has no model of domain size 1).
% 0.20/0.41  
% 0.20/0.41  The encoding turns the above axioms into the following unit equations and goals:
% 0.20/0.41  
% 0.20/0.41  Axiom 1 (identity): identity = divide(X, X).
% 0.20/0.41  Axiom 2 (inverse): inverse(X) = divide(identity, X).
% 0.20/0.41  Axiom 3 (multiply): multiply(X, Y) = divide(X, divide(identity, Y)).
% 0.20/0.41  Axiom 4 (single_axiom): divide(divide(identity, divide(X, Y)), divide(divide(Y, Z), X)) = Z.
% 0.20/0.41  
% 0.20/0.41  Lemma 5: inverse(identity) = identity.
% 0.20/0.41  Proof:
% 0.20/0.41    inverse(identity)
% 0.20/0.41  = { by axiom 2 (inverse) }
% 0.20/0.41    divide(identity, identity)
% 0.20/0.41  = { by axiom 1 (identity) R->L }
% 0.20/0.41    identity
% 0.20/0.41  
% 0.20/0.41  Lemma 6: divide(X, inverse(Y)) = multiply(X, Y).
% 0.20/0.41  Proof:
% 0.20/0.41    divide(X, inverse(Y))
% 0.20/0.41  = { by axiom 2 (inverse) }
% 0.20/0.41    divide(X, divide(identity, Y))
% 0.20/0.41  = { by axiom 3 (multiply) R->L }
% 0.20/0.41    multiply(X, Y)
% 0.20/0.41  
% 0.20/0.41  Lemma 7: multiply(identity, X) = inverse(inverse(X)).
% 0.20/0.41  Proof:
% 0.20/0.41    multiply(identity, X)
% 0.20/0.41  = { by lemma 6 R->L }
% 0.20/0.41    divide(identity, inverse(X))
% 0.20/0.41  = { by axiom 2 (inverse) R->L }
% 0.20/0.41    inverse(inverse(X))
% 0.20/0.41  
% 0.20/0.41  Lemma 8: divide(inverse(divide(X, Y)), divide(divide(Y, Z), X)) = Z.
% 0.20/0.41  Proof:
% 0.20/0.41    divide(inverse(divide(X, Y)), divide(divide(Y, Z), X))
% 0.20/0.41  = { by axiom 2 (inverse) }
% 0.20/0.41    divide(divide(identity, divide(X, Y)), divide(divide(Y, Z), X))
% 0.20/0.41  = { by axiom 4 (single_axiom) }
% 0.20/0.41    Z
% 0.20/0.41  
% 0.20/0.41  Lemma 9: multiply(inverse(divide(X, Y)), X) = Y.
% 0.20/0.41  Proof:
% 0.20/0.41    multiply(inverse(divide(X, Y)), X)
% 0.20/0.41  = { by lemma 6 R->L }
% 0.20/0.41    divide(inverse(divide(X, Y)), inverse(X))
% 0.20/0.41  = { by axiom 2 (inverse) }
% 0.20/0.41    divide(inverse(divide(X, Y)), divide(identity, X))
% 0.20/0.41  = { by axiom 1 (identity) }
% 0.20/0.41    divide(inverse(divide(X, Y)), divide(divide(Y, Y), X))
% 0.20/0.41  = { by lemma 8 }
% 0.20/0.42    Y
% 0.20/0.42  
% 0.20/0.42  Lemma 10: inverse(inverse(X)) = X.
% 0.20/0.42  Proof:
% 0.20/0.42    inverse(inverse(X))
% 0.20/0.42  = { by lemma 7 R->L }
% 0.20/0.42    multiply(identity, X)
% 0.20/0.42  = { by lemma 5 R->L }
% 0.20/0.42    multiply(inverse(identity), X)
% 0.20/0.42  = { by axiom 1 (identity) }
% 0.20/0.42    multiply(inverse(divide(X, X)), X)
% 0.20/0.42  = { by lemma 9 }
% 0.20/0.42    X
% 0.20/0.42  
% 0.20/0.42  Lemma 11: multiply(inverse(X), Y) = divide(Y, X).
% 0.20/0.42  Proof:
% 0.20/0.42    multiply(inverse(X), Y)
% 0.20/0.42  = { by lemma 8 R->L }
% 0.20/0.42    multiply(inverse(divide(inverse(divide(identity, Y)), divide(divide(Y, X), identity))), Y)
% 0.20/0.42  = { by lemma 10 R->L }
% 0.20/0.42    multiply(inverse(divide(inverse(divide(identity, Y)), divide(inverse(inverse(divide(Y, X))), identity))), Y)
% 0.20/0.42  = { by lemma 5 R->L }
% 0.20/0.42    multiply(inverse(divide(inverse(divide(identity, Y)), divide(inverse(inverse(divide(Y, X))), inverse(identity)))), Y)
% 0.20/0.42  = { by lemma 6 }
% 0.20/0.42    multiply(inverse(divide(inverse(divide(identity, Y)), multiply(inverse(inverse(divide(Y, X))), identity))), Y)
% 0.20/0.42  = { by axiom 2 (inverse) }
% 0.20/0.42    multiply(inverse(divide(inverse(divide(identity, Y)), multiply(inverse(divide(identity, divide(Y, X))), identity))), Y)
% 0.20/0.42  = { by lemma 9 }
% 0.20/0.42    multiply(inverse(divide(inverse(divide(identity, Y)), divide(Y, X))), Y)
% 0.20/0.42  = { by axiom 2 (inverse) R->L }
% 0.20/0.42    multiply(inverse(divide(inverse(inverse(Y)), divide(Y, X))), Y)
% 0.20/0.42  = { by lemma 10 }
% 0.20/0.42    multiply(inverse(divide(Y, divide(Y, X))), Y)
% 0.20/0.42  = { by lemma 9 }
% 0.20/0.42    divide(Y, X)
% 0.20/0.42  
% 0.20/0.42  Lemma 12: multiply(Y, X) = multiply(X, Y).
% 0.20/0.42  Proof:
% 0.20/0.42    multiply(Y, X)
% 0.20/0.42  = { by lemma 10 R->L }
% 0.20/0.42    multiply(inverse(inverse(Y)), X)
% 0.20/0.42  = { by lemma 11 }
% 0.20/0.42    divide(X, inverse(Y))
% 0.20/0.42  = { by lemma 6 }
% 0.20/0.42    multiply(X, Y)
% 0.20/0.42  
% 0.20/0.42  Lemma 13: inverse(divide(divide(X, Y), X)) = Y.
% 0.20/0.42  Proof:
% 0.20/0.42    inverse(divide(divide(X, Y), X))
% 0.20/0.42  = { by axiom 2 (inverse) }
% 0.20/0.42    divide(identity, divide(divide(X, Y), X))
% 0.20/0.42  = { by lemma 5 R->L }
% 0.20/0.42    divide(inverse(identity), divide(divide(X, Y), X))
% 0.20/0.42  = { by axiom 1 (identity) }
% 0.20/0.42    divide(inverse(divide(X, X)), divide(divide(X, Y), X))
% 0.20/0.42  = { by lemma 8 }
% 0.20/0.42    Y
% 0.20/0.42  
% 0.20/0.42  Lemma 14: inverse(divide(X, Y)) = divide(Y, X).
% 0.20/0.42  Proof:
% 0.20/0.42    inverse(divide(X, Y))
% 0.20/0.42  = { by lemma 9 R->L }
% 0.20/0.42    multiply(inverse(divide(Y, inverse(divide(X, Y)))), Y)
% 0.20/0.42  = { by lemma 6 }
% 0.20/0.42    multiply(inverse(multiply(Y, divide(X, Y))), Y)
% 0.20/0.42  = { by lemma 11 }
% 0.20/0.42    divide(Y, multiply(Y, divide(X, Y)))
% 0.20/0.42  = { by lemma 13 R->L }
% 0.20/0.42    divide(Y, multiply(inverse(divide(divide(X, Y), X)), divide(X, Y)))
% 0.20/0.42  = { by lemma 9 }
% 0.20/0.42    divide(Y, X)
% 0.20/0.42  
% 0.20/0.42  Lemma 15: divide(inverse(X), Y) = inverse(multiply(X, Y)).
% 0.20/0.42  Proof:
% 0.20/0.42    divide(inverse(X), Y)
% 0.20/0.42  = { by lemma 10 R->L }
% 0.20/0.42    divide(inverse(X), inverse(inverse(Y)))
% 0.20/0.42  = { by lemma 6 }
% 0.20/0.42    multiply(inverse(X), inverse(Y))
% 0.20/0.42  = { by lemma 11 }
% 0.20/0.42    divide(inverse(Y), X)
% 0.20/0.42  = { by lemma 14 R->L }
% 0.20/0.42    inverse(divide(X, inverse(Y)))
% 0.20/0.42  = { by lemma 6 }
% 0.20/0.42    inverse(multiply(X, Y))
% 0.20/0.42  
% 0.20/0.42  Lemma 16: multiply(inverse(X), X) = identity.
% 0.20/0.42  Proof:
% 0.20/0.42    multiply(inverse(X), X)
% 0.20/0.42  = { by lemma 6 R->L }
% 0.20/0.42    divide(inverse(X), inverse(X))
% 0.20/0.42  = { by axiom 1 (identity) R->L }
% 0.20/0.42    identity
% 0.20/0.42  
% 0.20/0.42  Goal 1 (prove_these_axioms): tuple(multiply(multiply(inverse(b2), b2), a2), multiply(multiply(a3, b3), c3), multiply(inverse(a1), a1), multiply(a4, b4)) = tuple(a2, multiply(a3, multiply(b3, c3)), multiply(inverse(b1), b1), multiply(b4, a4)).
% 0.20/0.42  Proof:
% 0.20/0.42    tuple(multiply(multiply(inverse(b2), b2), a2), multiply(multiply(a3, b3), c3), multiply(inverse(a1), a1), multiply(a4, b4))
% 0.20/0.42  = { by lemma 16 }
% 0.20/0.42    tuple(multiply(identity, a2), multiply(multiply(a3, b3), c3), multiply(inverse(a1), a1), multiply(a4, b4))
% 0.20/0.42  = { by lemma 16 }
% 0.20/0.42    tuple(multiply(identity, a2), multiply(multiply(a3, b3), c3), identity, multiply(a4, b4))
% 0.20/0.42  = { by lemma 7 }
% 0.20/0.42    tuple(inverse(inverse(a2)), multiply(multiply(a3, b3), c3), identity, multiply(a4, b4))
% 0.20/0.42  = { by lemma 10 }
% 0.20/0.42    tuple(a2, multiply(multiply(a3, b3), c3), identity, multiply(a4, b4))
% 0.20/0.42  = { by lemma 12 R->L }
% 0.20/0.42    tuple(a2, multiply(c3, multiply(a3, b3)), identity, multiply(a4, b4))
% 0.20/0.42  = { by lemma 12 }
% 0.20/0.42    tuple(a2, multiply(c3, multiply(b3, a3)), identity, multiply(a4, b4))
% 0.20/0.42  = { by lemma 6 R->L }
% 0.20/0.42    tuple(a2, divide(c3, inverse(multiply(b3, a3))), identity, multiply(a4, b4))
% 0.20/0.42  = { by lemma 15 R->L }
% 0.20/0.42    tuple(a2, divide(c3, divide(inverse(b3), a3)), identity, multiply(a4, b4))
% 0.20/0.42  = { by lemma 14 R->L }
% 0.20/0.42    tuple(a2, inverse(divide(divide(inverse(b3), a3), c3)), identity, multiply(a4, b4))
% 0.20/0.42  = { by lemma 13 R->L }
% 0.20/0.42    tuple(a2, inverse(inverse(divide(divide(inverse(divide(c3, inverse(b3))), divide(divide(inverse(b3), a3), c3)), inverse(divide(c3, inverse(b3)))))), identity, multiply(a4, b4))
% 0.20/0.42  = { by lemma 8 }
% 0.20/0.42    tuple(a2, inverse(inverse(divide(a3, inverse(divide(c3, inverse(b3)))))), identity, multiply(a4, b4))
% 0.20/0.42  = { by lemma 14 }
% 0.20/0.42    tuple(a2, inverse(divide(inverse(divide(c3, inverse(b3))), a3)), identity, multiply(a4, b4))
% 0.20/0.42  = { by lemma 15 }
% 0.20/0.42    tuple(a2, inverse(inverse(multiply(divide(c3, inverse(b3)), a3))), identity, multiply(a4, b4))
% 0.20/0.42  = { by lemma 12 R->L }
% 0.20/0.42    tuple(a2, inverse(inverse(multiply(a3, divide(c3, inverse(b3))))), identity, multiply(a4, b4))
% 0.20/0.42  = { by lemma 10 }
% 0.20/0.42    tuple(a2, multiply(a3, divide(c3, inverse(b3))), identity, multiply(a4, b4))
% 0.20/0.42  = { by lemma 6 }
% 0.20/0.42    tuple(a2, multiply(a3, multiply(c3, b3)), identity, multiply(a4, b4))
% 0.20/0.42  = { by lemma 12 R->L }
% 0.20/0.42    tuple(a2, multiply(a3, multiply(b3, c3)), identity, multiply(a4, b4))
% 0.20/0.42  = { by lemma 12 }
% 0.20/0.42    tuple(a2, multiply(a3, multiply(b3, c3)), identity, multiply(b4, a4))
% 0.20/0.42  = { by lemma 16 R->L }
% 0.20/0.42    tuple(a2, multiply(a3, multiply(b3, c3)), multiply(inverse(b1), b1), multiply(b4, a4))
% 0.20/0.42  % SZS output end Proof
% 0.20/0.42  
% 0.20/0.42  RESULT: Unsatisfiable (the axioms are contradictory).
%------------------------------------------------------------------------------