TSTP Solution File: GRP080-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP080-1 : TPTP v8.1.0. Bugfixed v2.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n020.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:56:01 EDT 2022

% Result   : Unsatisfiable 2.55s 2.78s
% Output   : Refutation 2.55s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   17
%            Number of leaves      :    6
% Syntax   : Number of clauses     :   61 (  54 unt;   0 nHn;   9 RR)
%            Number of literals    :   75 (  74 equ;  21 neg)
%            Maximal clause size   :    3 (   1 avg)
%            Maximal term depth    :    9 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    9 (   9 usr;   6 con; 0-2 aty)
%            Number of variables   :  100 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( multiply(inverse(a1),a1) != identity
    | multiply(identity,a2) != a2
    | multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)) ),
    file('GRP080-1.p',unknown),
    [] ).

cnf(2,axiom,
    A = A,
    file('GRP080-1.p',unknown),
    [] ).

cnf(3,axiom,
    double_divide(double_divide(identity,double_divide(A,double_divide(B,identity))),double_divide(double_divide(B,double_divide(C,A)),identity)) = C,
    file('GRP080-1.p',unknown),
    [] ).

cnf(6,axiom,
    multiply(A,B) = double_divide(double_divide(B,A),identity),
    file('GRP080-1.p',unknown),
    [] ).

cnf(8,axiom,
    inverse(A) = double_divide(A,identity),
    file('GRP080-1.p',unknown),
    [] ).

cnf(9,axiom,
    identity = double_divide(A,inverse(A)),
    file('GRP080-1.p',unknown),
    [] ).

cnf(11,plain,
    double_divide(A,double_divide(A,identity)) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(copy,[status(thm)],[9]),8])]),
    [iquote('copy,9,demod,8,flip.1')] ).

cnf(12,plain,
    ( double_divide(identity,identity) != identity
    | double_divide(double_divide(a2,identity),identity) != a2
    | double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity) != double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity) ),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1]),8,6,11,6,6,6,6,6])]),
    [iquote('back_demod,1,demod,8,6,11,6,6,6,6,6,flip.3')] ).

cnf(13,plain,
    double_divide(double_divide(identity,identity),double_divide(double_divide(A,double_divide(B,A)),identity)) = B,
    inference(para_into,[status(thm),theory(equality)],[3,11]),
    [iquote('para_into,3.1.1.1.2,10.1.1')] ).

cnf(15,plain,
    double_divide(double_divide(identity,A),double_divide(double_divide(double_divide(B,double_divide(A,C)),double_divide(D,double_divide(identity,double_divide(C,double_divide(B,identity))))),identity)) = D,
    inference(para_into,[status(thm),theory(equality)],[3,3]),
    [iquote('para_into,3.1.1.1.2,3.1.1')] ).

cnf(17,plain,
    double_divide(double_divide(identity,double_divide(double_divide(A,identity),double_divide(B,identity))),double_divide(double_divide(B,identity),identity)) = A,
    inference(para_into,[status(thm),theory(equality)],[3,11]),
    [iquote('para_into,3.1.1.2.1.2,10.1.1')] ).

cnf(21,plain,
    double_divide(double_divide(identity,double_divide(identity,double_divide(A,identity))),double_divide(identity,identity)) = A,
    inference(para_into,[status(thm),theory(equality)],[3,11]),
    [iquote('para_into,3.1.1.2.1,10.1.1')] ).

cnf(25,plain,
    double_divide(identity,identity) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[3,11])]),
    [iquote('para_into,3.1.1,10.1.1,flip.1')] ).

cnf(27,plain,
    double_divide(double_divide(identity,double_divide(identity,double_divide(A,identity))),identity) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[21]),25]),
    [iquote('back_demod,21,demod,25')] ).

cnf(29,plain,
    double_divide(identity,double_divide(double_divide(A,double_divide(B,A)),identity)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[13]),25]),
    [iquote('back_demod,13,demod,25')] ).

cnf(31,plain,
    ( identity != identity
    | double_divide(double_divide(a2,identity),identity) != a2
    | double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity) != double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity) ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[12]),25]),
    [iquote('back_demod,12,demod,25')] ).

cnf(33,plain,
    double_divide(identity,double_divide(double_divide(double_divide(A,double_divide(identity,B)),double_divide(C,double_divide(identity,double_divide(B,double_divide(A,identity))))),identity)) = C,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[15,11]),25]),
    [iquote('para_into,15.1.1.1,10.1.1,demod,25')] ).

cnf(54,plain,
    double_divide(identity,double_divide(double_divide(double_divide(A,identity),double_divide(B,double_divide(identity,double_divide(identity,double_divide(A,identity))))),identity)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[25,15]),25]),
    [iquote('para_from,24.1.1,15.1.1.2.1.1.2,demod,25')] ).

cnf(63,plain,
    double_divide(double_divide(identity,double_divide(identity,A)),identity) = double_divide(identity,double_divide(identity,double_divide(A,identity))),
    inference(para_into,[status(thm),theory(equality)],[27,27]),
    [iquote('para_into,27.1.1.1.2.2,27.1.1')] ).

cnf(64,plain,
    double_divide(identity,double_divide(identity,double_divide(double_divide(A,identity),identity))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[27]),63]),
    [iquote('back_demod,27,demod,63')] ).

cnf(70,plain,
    double_divide(identity,double_divide(double_divide(double_divide(A,identity),identity),identity)) = A,
    inference(para_into,[status(thm),theory(equality)],[29,11]),
    [iquote('para_into,29.1.1.2.1.2,10.1.1')] ).

cnf(92,plain,
    double_divide(double_divide(identity,double_divide(double_divide(identity,double_divide(double_divide(A,identity),identity)),double_divide(B,identity))),double_divide(double_divide(B,A),identity)) = identity,
    inference(para_from,[status(thm),theory(equality)],[64,3]),
    [iquote('para_from,64.1.1,3.1.1.2.1.2')] ).

cnf(98,plain,
    double_divide(double_divide(identity,A),double_divide(double_divide(double_divide(double_divide(B,double_divide(identity,C)),double_divide(A,double_divide(identity,double_divide(C,double_divide(B,identity))))),identity),identity)) = identity,
    inference(para_into,[status(thm),theory(equality)],[17,15]),
    [iquote('para_into,17.1.1.1.2,15.1.1')] ).

cnf(106,plain,
    double_divide(identity,double_divide(double_divide(double_divide(double_divide(A,identity),identity),B),identity)) = double_divide(identity,double_divide(double_divide(B,identity),double_divide(A,identity))),
    inference(para_from,[status(thm),theory(equality)],[17,29]),
    [iquote('para_from,17.1.1,29.1.1.2.1.2')] ).

cnf(112,plain,
    double_divide(identity,A) = double_divide(A,identity),
    inference(para_from,[status(thm),theory(equality)],[70,64]),
    [iquote('para_from,70.1.1,64.1.1.2')] ).

cnf(122,plain,
    double_divide(double_divide(A,identity),identity) = double_divide(identity,double_divide(A,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[70,29])]),
    [iquote('para_from,70.1.1,29.1.1.2.1,flip.1')] ).

cnf(123,plain,
    double_divide(A,identity) = double_divide(identity,A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[112])]),
    [iquote('copy,112,flip.1')] ).

cnf(127,plain,
    double_divide(identity,double_divide(double_divide(double_divide(identity,double_divide(A,identity)),B),identity)) = double_divide(identity,double_divide(double_divide(B,identity),double_divide(A,identity))),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[106]),122]),
    [iquote('back_demod,106,demod,122')] ).

cnf(130,plain,
    double_divide(double_divide(identity,A),A) = identity,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[98]),122,33]),
    [iquote('back_demod,98,demod,122,33')] ).

cnf(134,plain,
    double_divide(double_divide(identity,double_divide(double_divide(identity,double_divide(identity,double_divide(A,identity))),double_divide(B,identity))),double_divide(double_divide(B,A),identity)) = identity,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[92]),122]),
    [iquote('back_demod,92,demod,122')] ).

cnf(142,plain,
    ( identity != identity
    | double_divide(identity,double_divide(a2,identity)) != a2
    | double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity) != double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity) ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[31]),122]),
    [iquote('back_demod,31,demod,122')] ).

cnf(143,plain,
    double_divide(double_divide(identity,double_divide(double_divide(A,identity),double_divide(B,identity))),double_divide(identity,double_divide(B,identity))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[17]),122]),
    [iquote('back_demod,17,demod,122')] ).

cnf(165,plain,
    double_divide(identity,double_divide(identity,double_divide(A,double_divide(B,A)))) = B,
    inference(para_from,[status(thm),theory(equality)],[123,29]),
    [iquote('para_from,123.1.1,29.1.1.2')] ).

cnf(181,plain,
    double_divide(double_divide(identity,A),double_divide(identity,double_divide(double_divide(B,double_divide(A,C)),identity))) = double_divide(identity,double_divide(identity,double_divide(C,double_divide(B,identity)))),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[130,15]),122]),
    [iquote('para_from,130.1.1,15.1.1.2.1.2,demod,122')] ).

cnf(190,plain,
    double_divide(identity,double_divide(identity,double_divide(A,identity))) = double_divide(identity,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[130,29]),122]),
    [iquote('para_from,130.1.1,29.1.1.2.1.2,demod,122')] ).

cnf(194,plain,
    double_divide(double_divide(identity,double_divide(A,double_divide(B,identity))),double_divide(identity,double_divide(B,identity))) = double_divide(identity,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[130,3]),122]),
    [iquote('para_from,130.1.1,3.1.1.2.1.2,demod,122')] ).

cnf(195,plain,
    double_divide(identity,double_divide(double_divide(A,double_divide(B,double_divide(identity,double_divide(A,identity)))),identity)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[130,3]),25]),
    [iquote('para_from,130.1.1,3.1.1.1.2,demod,25')] ).

cnf(205,plain,
    double_divide(double_divide(identity,double_divide(double_divide(identity,A),double_divide(B,identity))),double_divide(double_divide(B,A),identity)) = identity,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[134]),190]),
    [iquote('back_demod,134,demod,190')] ).

cnf(213,plain,
    double_divide(identity,double_divide(double_divide(double_divide(A,identity),double_divide(B,double_divide(identity,A))),identity)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[54]),190]),
    [iquote('back_demod,54,demod,190')] ).

cnf(226,plain,
    double_divide(identity,double_divide(A,identity)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[143]),194]),
    [iquote('back_demod,143,demod,194')] ).

cnf(227,plain,
    double_divide(double_divide(A,identity),double_divide(B,double_divide(identity,A))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[213]),226]),
    [iquote('back_demod,213,demod,226')] ).

cnf(234,plain,
    double_divide(A,double_divide(B,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[195]),226,226]),
    [iquote('back_demod,195,demod,226,226')] ).

cnf(239,plain,
    double_divide(double_divide(identity,A),double_divide(B,double_divide(A,C))) = double_divide(identity,double_divide(identity,double_divide(C,double_divide(B,identity)))),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[181]),234]),
    [iquote('back_demod,181,demod,234')] ).

cnf(244,plain,
    ( identity != identity
    | a2 != a2
    | double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity) != double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity) ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[142]),234]),
    [iquote('back_demod,142,demod,234')] ).

cnf(247,plain,
    double_divide(A,B) = double_divide(identity,double_divide(double_divide(B,identity),double_divide(A,identity))),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[127]),234,234]),
    [iquote('back_demod,127,demod,234,234')] ).

cnf(262,plain,
    double_divide(identity,double_divide(identity,A)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[165]),234]),
    [iquote('back_demod,165,demod,234')] ).

cnf(267,plain,
    double_divide(A,double_divide(B,identity)) = double_divide(double_divide(identity,C),double_divide(B,double_divide(C,A))),
    inference(demod,[status(thm),theory(equality)],[inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[239])]),262]),
    [iquote('copy,239,flip.1,demod,262')] ).

cnf(354,plain,
    double_divide(double_divide(A,B),A) = B,
    inference(para_into,[status(thm),theory(equality)],[234,234]),
    [iquote('para_into,233.1.1.2,233.1.1')] ).

cnf(357,plain,
    double_divide(double_divide(A,identity),identity) = A,
    inference(para_into,[status(thm),theory(equality)],[234,11]),
    [iquote('para_into,233.1.1.2,10.1.1')] ).

cnf(377,plain,
    double_divide(double_divide(A,double_divide(B,C)),identity) = double_divide(B,double_divide(identity,double_divide(C,double_divide(A,identity)))),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[354,3])]),
    [iquote('para_into,353.1.1.1,3.1.1,flip.1')] ).

cnf(413,plain,
    ( identity != identity
    | a2 != a2
    | double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity) != double_divide(double_divide(b3,a3),double_divide(identity,c3)) ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[244]),377,234]),
    [iquote('back_demod,244,demod,377,234')] ).

cnf(441,plain,
    double_divide(double_divide(A,identity),B) = double_divide(double_divide(identity,A),B),
    inference(para_into,[status(thm),theory(equality)],[227,354]),
    [iquote('para_into,227.1.1.2,353.1.1')] ).

cnf(465,plain,
    double_divide(double_divide(identity,A),double_divide(B,identity)) = double_divide(double_divide(B,A),identity),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[205,354]),262]),
    [iquote('para_from,205.1.1,353.1.1.1,demod,262')] ).

cnf(502,plain,
    double_divide(double_divide(identity,A),B) = double_divide(identity,double_divide(double_divide(B,identity),A)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[247,441]),357]),
    [iquote('para_into,247.1.1,441.1.1,demod,357')] ).

cnf(775,plain,
    double_divide(double_divide(double_divide(A,identity),B),identity) = double_divide(double_divide(identity,B),A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[465,441]),354])]),
    [iquote('para_into,465.1.1.2,441.1.1,demod,354,flip.1')] ).

cnf(816,plain,
    ( identity != identity
    | a2 != a2
    | double_divide(double_divide(identity,a3),double_divide(c3,b3)) != double_divide(double_divide(b3,a3),double_divide(identity,c3)) ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[413]),775]),
    [iquote('back_demod,413,demod,775')] ).

cnf(969,plain,
    double_divide(A,B) = double_divide(double_divide(identity,C),double_divide(double_divide(identity,B),double_divide(C,A))),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[267,502]),25,262]),
    [iquote('para_into,267.1.1.2,502.1.1,demod,25,262')] ).

cnf(983,plain,
    double_divide(double_divide(identity,A),double_divide(double_divide(identity,B),double_divide(A,C))) = double_divide(C,B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[969])]),
    [iquote('copy,969,flip.1')] ).

cnf(2427,plain,
    double_divide(double_divide(A,B),double_divide(identity,C)) = double_divide(double_divide(identity,B),double_divide(C,A)),
    inference(para_from,[status(thm),theory(equality)],[983,354]),
    [iquote('para_from,983.1.1,353.1.1.1')] ).

cnf(2433,plain,
    double_divide(double_divide(identity,A),double_divide(B,C)) = double_divide(double_divide(C,A),double_divide(identity,B)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[2427])]),
    [iquote('copy,2427,flip.1')] ).

cnf(3968,plain,
    $false,
    inference(hyper,[status(thm)],[816,2,2,2433]),
    [iquote('hyper,816,2,2,2433')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.10/0.12  % Problem  : GRP080-1 : TPTP v8.1.0. Bugfixed v2.3.0.
% 0.10/0.13  % Command  : otter-tptp-script %s
% 0.13/0.34  % Computer : n020.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Wed Jul 27 05:05:23 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 2.55/2.78  ----- Otter 3.3f, August 2004 -----
% 2.55/2.78  The process was started by sandbox on n020.cluster.edu,
% 2.55/2.78  Wed Jul 27 05:05:23 2022
% 2.55/2.78  The command was "./otter".  The process ID is 25571.
% 2.55/2.78  
% 2.55/2.78  set(prolog_style_variables).
% 2.55/2.78  set(auto).
% 2.55/2.78     dependent: set(auto1).
% 2.55/2.78     dependent: set(process_input).
% 2.55/2.78     dependent: clear(print_kept).
% 2.55/2.78     dependent: clear(print_new_demod).
% 2.55/2.78     dependent: clear(print_back_demod).
% 2.55/2.78     dependent: clear(print_back_sub).
% 2.55/2.78     dependent: set(control_memory).
% 2.55/2.78     dependent: assign(max_mem, 12000).
% 2.55/2.78     dependent: assign(pick_given_ratio, 4).
% 2.55/2.78     dependent: assign(stats_level, 1).
% 2.55/2.78     dependent: assign(max_seconds, 10800).
% 2.55/2.78  clear(print_given).
% 2.55/2.78  
% 2.55/2.78  list(usable).
% 2.55/2.78  0 [] A=A.
% 2.55/2.78  0 [] double_divide(double_divide(identity,double_divide(X,double_divide(Y,identity))),double_divide(double_divide(Y,double_divide(Z,X)),identity))=Z.
% 2.55/2.78  0 [] multiply(X,Y)=double_divide(double_divide(Y,X),identity).
% 2.55/2.78  0 [] inverse(X)=double_divide(X,identity).
% 2.55/2.78  0 [] identity=double_divide(X,inverse(X)).
% 2.55/2.78  0 [] multiply(inverse(a1),a1)!=identity|multiply(identity,a2)!=a2|multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3)).
% 2.55/2.78  end_of_list.
% 2.55/2.78  
% 2.55/2.78  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=3.
% 2.55/2.78  
% 2.55/2.78  This is a Horn set with equality.  The strategy will be
% 2.55/2.78  Knuth-Bendix and hyper_res, with positive clauses in
% 2.55/2.78  sos and nonpositive clauses in usable.
% 2.55/2.78  
% 2.55/2.78     dependent: set(knuth_bendix).
% 2.55/2.78     dependent: set(anl_eq).
% 2.55/2.78     dependent: set(para_from).
% 2.55/2.78     dependent: set(para_into).
% 2.55/2.78     dependent: clear(para_from_right).
% 2.55/2.78     dependent: clear(para_into_right).
% 2.55/2.78     dependent: set(para_from_vars).
% 2.55/2.78     dependent: set(eq_units_both_ways).
% 2.55/2.78     dependent: set(dynamic_demod_all).
% 2.55/2.78     dependent: set(dynamic_demod).
% 2.55/2.78     dependent: set(order_eq).
% 2.55/2.78     dependent: set(back_demod).
% 2.55/2.78     dependent: set(lrpo).
% 2.55/2.78     dependent: set(hyper_res).
% 2.55/2.78     dependent: clear(order_hyper).
% 2.55/2.78  
% 2.55/2.78  ------------> process usable:
% 2.55/2.78  ** KEPT (pick-wt=22): 1 [] multiply(inverse(a1),a1)!=identity|multiply(identity,a2)!=a2|multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3)).
% 2.55/2.78  
% 2.55/2.78  ------------> process sos:
% 2.55/2.78  ** KEPT (pick-wt=3): 2 [] A=A.
% 2.55/2.78  ** KEPT (pick-wt=17): 3 [] double_divide(double_divide(identity,double_divide(A,double_divide(B,identity))),double_divide(double_divide(B,double_divide(C,A)),identity))=C.
% 2.55/2.78  ---> New Demodulator: 4 [new_demod,3] double_divide(double_divide(identity,double_divide(A,double_divide(B,identity))),double_divide(double_divide(B,double_divide(C,A)),identity))=C.
% 2.55/2.78  ** KEPT (pick-wt=9): 5 [] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 2.55/2.78  ---> New Demodulator: 6 [new_demod,5] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 2.55/2.78  ** KEPT (pick-wt=6): 7 [] inverse(A)=double_divide(A,identity).
% 2.55/2.78  ---> New Demodulator: 8 [new_demod,7] inverse(A)=double_divide(A,identity).
% 2.55/2.78  ** KEPT (pick-wt=7): 10 [copy,9,demod,8,flip.1] double_divide(A,double_divide(A,identity))=identity.
% 2.55/2.78  ---> New Demodulator: 11 [new_demod,10] double_divide(A,double_divide(A,identity))=identity.
% 2.55/2.78    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 2.55/2.78  >>>> Starting back demodulation with 4.
% 2.55/2.78  >>>> Starting back demodulation with 6.
% 2.55/2.78      >> back demodulating 1 with 6.
% 2.55/2.78  >>>> Starting back demodulation with 8.
% 2.55/2.78  >>>> Starting back demodulation with 11.
% 2.55/2.78  
% 2.55/2.78  ======= end of input processing =======
% 2.55/2.78  
% 2.55/2.78  =========== start of search ===========
% 2.55/2.78  
% 2.55/2.78  
% 2.55/2.78  Resetting weight limit to 17.
% 2.55/2.78  
% 2.55/2.78  
% 2.55/2.78  Resetting weight limit to 17.
% 2.55/2.78  
% 2.55/2.78  sos_size=1651
% 2.55/2.78  
% 2.55/2.78  -------- PROOF -------- 
% 2.55/2.78  
% 2.55/2.78  -----> EMPTY CLAUSE at   0.60 sec ----> 3968 [hyper,816,2,2,2433] $F.
% 2.55/2.78  
% 2.55/2.78  Length of proof is 54.  Level of proof is 16.
% 2.55/2.78  
% 2.55/2.78  ---------------- PROOF ----------------
% 2.55/2.78  % SZS status Unsatisfiable
% 2.55/2.78  % SZS output start Refutation
% See solution above
% 2.55/2.79  ------------ end of proof -------------
% 2.55/2.79  
% 2.55/2.79  
% 2.55/2.79  Search stopped by max_proofs option.
% 2.55/2.79  
% 2.55/2.79  
% 2.55/2.79  Search stopped by max_proofs option.
% 2.55/2.79  
% 2.55/2.79  ============ end of search ============
% 2.55/2.79  
% 2.55/2.79  -------------- statistics -------------
% 2.55/2.79  clauses given                221
% 2.55/2.79  clauses generated          72010
% 2.55/2.79  clauses kept                3151
% 2.55/2.79  clauses forward subsumed   57512
% 2.55/2.79  clauses back subsumed        104
% 2.55/2.79  Kbytes malloced             4882
% 2.55/2.79  
% 2.55/2.79  ----------- times (seconds) -----------
% 2.55/2.79  user CPU time          0.60          (0 hr, 0 min, 0 sec)
% 2.55/2.79  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 2.55/2.79  wall-clock time        3             (0 hr, 0 min, 3 sec)
% 2.55/2.79  
% 2.55/2.79  That finishes the proof of the theorem.
% 2.55/2.79  
% 2.55/2.79  Process 25571 finished Wed Jul 27 05:05:26 2022
% 2.55/2.79  Otter interrupted
% 2.55/2.79  PROOF FOUND
%------------------------------------------------------------------------------