TSTP Solution File: GRP079-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP079-1 : TPTP v8.1.0. Bugfixed v2.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n018.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:56:00 EDT 2022

% Result   : Unsatisfiable 2.32s 2.52s
% Output   : Refutation 2.32s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   19
%            Number of leaves      :    6
% Syntax   : Number of clauses     :   60 (  55 unt;   0 nHn;   7 RR)
%            Number of literals    :   70 (  69 equ;  15 neg)
%            Maximal clause size   :    3 (   1 avg)
%            Maximal term depth    :    7 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    9 (   9 usr;   6 con; 0-2 aty)
%            Number of variables   :  111 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( multiply(inverse(a1),a1) != identity
    | multiply(identity,a2) != a2
    | multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)) ),
    file('GRP079-1.p',unknown),
    [] ).

cnf(2,axiom,
    A = A,
    file('GRP079-1.p',unknown),
    [] ).

cnf(3,axiom,
    double_divide(double_divide(identity,A),double_divide(double_divide(double_divide(B,C),double_divide(identity,identity)),double_divide(A,C))) = B,
    file('GRP079-1.p',unknown),
    [] ).

cnf(6,axiom,
    multiply(A,B) = double_divide(double_divide(B,A),identity),
    file('GRP079-1.p',unknown),
    [] ).

cnf(8,axiom,
    inverse(A) = double_divide(A,identity),
    file('GRP079-1.p',unknown),
    [] ).

cnf(9,axiom,
    identity = double_divide(A,inverse(A)),
    file('GRP079-1.p',unknown),
    [] ).

cnf(11,plain,
    double_divide(A,double_divide(A,identity)) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(copy,[status(thm)],[9]),8])]),
    [iquote('copy,9,demod,8,flip.1')] ).

cnf(12,plain,
    ( double_divide(identity,identity) != identity
    | double_divide(double_divide(a2,identity),identity) != a2
    | double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity) != double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity) ),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1]),8,6,11,6,6,6,6,6])]),
    [iquote('back_demod,1,demod,8,6,11,6,6,6,6,6,flip.3')] ).

cnf(13,plain,
    double_divide(identity,double_divide(double_divide(double_divide(A,B),double_divide(identity,identity)),double_divide(double_divide(identity,identity),B))) = A,
    inference(para_into,[status(thm),theory(equality)],[3,11]),
    [iquote('para_into,3.1.1.1,10.1.1')] ).

cnf(15,plain,
    double_divide(double_divide(identity,A),double_divide(identity,double_divide(A,double_divide(B,identity)))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[3,11]),11]),
    [iquote('para_into,3.1.1.2.1.1,10.1.1,demod,11')] ).

cnf(17,plain,
    double_divide(double_divide(identity,A),double_divide(double_divide(B,double_divide(identity,identity)),double_divide(A,double_divide(double_divide(double_divide(B,C),double_divide(identity,identity)),double_divide(D,C))))) = double_divide(identity,D),
    inference(para_into,[status(thm),theory(equality)],[3,3]),
    [iquote('para_into,3.1.1.2.1.1,3.1.1')] ).

cnf(19,plain,
    double_divide(double_divide(identity,A),double_divide(double_divide(double_divide(B,double_divide(A,identity)),double_divide(identity,identity)),identity)) = B,
    inference(para_into,[status(thm),theory(equality)],[3,11]),
    [iquote('para_into,3.1.1.2.2,10.1.1')] ).

cnf(23,plain,
    double_divide(double_divide(identity,double_divide(double_divide(A,identity),double_divide(identity,identity))),identity) = A,
    inference(para_into,[status(thm),theory(equality)],[3,11]),
    [iquote('para_into,3.1.1.2,10.1.1')] ).

cnf(25,plain,
    double_divide(identity,double_divide(identity,double_divide(double_divide(identity,identity),double_divide(A,identity)))) = A,
    inference(para_into,[status(thm),theory(equality)],[15,11]),
    [iquote('para_into,15.1.1.1,10.1.1')] ).

cnf(27,plain,
    double_divide(double_divide(identity,A),double_divide(identity,identity)) = A,
    inference(para_into,[status(thm),theory(equality)],[15,11]),
    [iquote('para_into,15.1.1.2.2,10.1.1')] ).

cnf(31,plain,
    double_divide(double_divide(identity,A),double_divide(double_divide(B,double_divide(identity,identity)),double_divide(A,double_divide(identity,double_divide(C,double_divide(B,identity)))))) = double_divide(identity,C),
    inference(para_from,[status(thm),theory(equality)],[15,3]),
    [iquote('para_from,15.1.1,3.1.1.2.1.1')] ).

cnf(34,plain,
    double_divide(identity,identity) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[27,11]),11])]),
    [iquote('para_into,27.1.1.1,10.1.1,demod,11,flip.1')] ).

cnf(35,plain,
    double_divide(double_divide(identity,A),double_divide(double_divide(B,identity),double_divide(A,double_divide(identity,double_divide(C,double_divide(B,identity)))))) = double_divide(identity,C),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[31]),34]),
    [iquote('back_demod,31,demod,34')] ).

cnf(40,plain,
    double_divide(double_divide(identity,A),identity) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[27]),34]),
    [iquote('back_demod,27,demod,34')] ).

cnf(41,plain,
    double_divide(identity,double_divide(identity,double_divide(identity,double_divide(A,identity)))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[25]),34]),
    [iquote('back_demod,25,demod,34')] ).

cnf(44,plain,
    double_divide(double_divide(A,identity),identity) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[23]),34,40]),
    [iquote('back_demod,23,demod,34,40')] ).

cnf(48,plain,
    double_divide(double_divide(identity,A),double_divide(B,double_divide(A,identity))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[19]),34,44]),
    [iquote('back_demod,19,demod,34,44')] ).

cnf(49,plain,
    double_divide(double_divide(identity,A),double_divide(double_divide(B,identity),double_divide(A,double_divide(double_divide(double_divide(B,C),identity),double_divide(D,C))))) = double_divide(identity,D),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[17]),34,34]),
    [iquote('back_demod,17,demod,34,34')] ).

cnf(51,plain,
    double_divide(identity,double_divide(double_divide(double_divide(A,B),identity),double_divide(identity,B))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[13]),34,34]),
    [iquote('back_demod,13,demod,34,34')] ).

cnf(53,plain,
    ( identity != identity
    | a2 != a2
    | double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity) != double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity) ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[12]),34,44]),
    [iquote('back_demod,12,demod,34,44')] ).

cnf(57,plain,
    double_divide(double_divide(identity,A),double_divide(identity,double_divide(A,B))) = double_divide(identity,B),
    inference(para_from,[status(thm),theory(equality)],[40,15]),
    [iquote('para_from,39.1.1,15.1.1.2.2.2')] ).

cnf(58,plain,
    double_divide(double_divide(identity,A),A) = identity,
    inference(para_from,[status(thm),theory(equality)],[40,11]),
    [iquote('para_from,39.1.1,10.1.1.2')] ).

cnf(61,plain,
    double_divide(identity,double_divide(A,identity)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[15]),57]),
    [iquote('back_demod,15,demod,57')] ).

cnf(63,plain,
    double_divide(identity,double_divide(identity,A)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[41]),61]),
    [iquote('back_demod,41,demod,61')] ).

cnf(72,plain,
    double_divide(A,identity) = double_divide(identity,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[35,11]),34,48]),
    [iquote('para_into,35.1.1.2.2.2.2,10.1.1,demod,34,48')] ).

cnf(73,plain,
    double_divide(identity,A) = double_divide(A,identity),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[72])]),
    [iquote('copy,72,flip.1')] ).

cnf(79,plain,
    double_divide(A,double_divide(B,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[48,63]),40]),
    [iquote('para_into,47.1.1.1,62.1.1,demod,40')] ).

cnf(81,plain,
    double_divide(double_divide(A,B),A) = B,
    inference(para_into,[status(thm),theory(equality)],[79,79]),
    [iquote('para_into,78.1.1.2,78.1.1')] ).

cnf(116,plain,
    double_divide(double_divide(identity,A),double_divide(double_divide(B,identity),double_divide(A,double_divide(B,C)))) = C,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[49,58]),44,63]),
    [iquote('para_into,49.1.1.2.2.2.2,58.1.1,demod,44,63')] ).

cnf(134,plain,
    double_divide(double_divide(identity,A),B) = double_divide(double_divide(A,identity),B),
    inference(para_from,[status(thm),theory(equality)],[81,48]),
    [iquote('para_from,80.1.1,47.1.1.2')] ).

cnf(135,plain,
    double_divide(double_divide(identity,A),double_divide(double_divide(B,identity),double_divide(A,double_divide(double_divide(double_divide(B,C),identity),D)))) = double_divide(identity,double_divide(C,D)),
    inference(para_from,[status(thm),theory(equality)],[81,49]),
    [iquote('para_from,80.1.1,49.1.1.2.2.2.2')] ).

cnf(156,plain,
    double_divide(identity,double_divide(double_divide(A,identity),double_divide(identity,B))) = double_divide(B,A),
    inference(para_into,[status(thm),theory(equality)],[51,81]),
    [iquote('para_into,51.1.1.2.1.1,80.1.1')] ).

cnf(165,plain,
    double_divide(A,B) = double_divide(identity,double_divide(double_divide(B,identity),double_divide(identity,A))),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[156])]),
    [iquote('copy,156,flip.1')] ).

cnf(183,plain,
    double_divide(double_divide(identity,A),double_divide(identity,B)) = double_divide(identity,double_divide(B,A)),
    inference(para_into,[status(thm),theory(equality)],[57,79]),
    [iquote('para_into,56.1.1.2.2,78.1.1')] ).

cnf(184,plain,
    double_divide(A,double_divide(identity,B)) = double_divide(identity,double_divide(B,double_divide(A,identity))),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[57,48]),63]),
    [iquote('para_into,56.1.1.2.2,47.1.1,demod,63')] ).

cnf(188,plain,
    double_divide(identity,double_divide(A,B)) = double_divide(double_divide(identity,B),double_divide(identity,A)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[183])]),
    [iquote('copy,183,flip.1')] ).

cnf(189,plain,
    double_divide(identity,double_divide(A,double_divide(B,identity))) = double_divide(B,double_divide(identity,A)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[184])]),
    [iquote('copy,184,flip.1')] ).

cnf(211,plain,
    double_divide(identity,double_divide(double_divide(identity,A),double_divide(identity,B))) = double_divide(B,A),
    inference(para_into,[status(thm),theory(equality)],[156,72]),
    [iquote('para_into,156.1.1.2.1,72.1.1')] ).

cnf(220,plain,
    double_divide(double_divide(A,B),identity) = double_divide(double_divide(B,identity),double_divide(identity,A)),
    inference(para_from,[status(thm),theory(equality)],[156,81]),
    [iquote('para_from,156.1.1,80.1.1.1')] ).

cnf(223,plain,
    double_divide(identity,double_divide(A,B)) = double_divide(double_divide(B,identity),double_divide(identity,A)),
    inference(para_from,[status(thm),theory(equality)],[156,63]),
    [iquote('para_from,156.1.1,62.1.1.2')] ).

cnf(228,plain,
    double_divide(double_divide(A,identity),double_divide(identity,B)) = double_divide(double_divide(B,A),identity),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[220])]),
    [iquote('copy,220,flip.1')] ).

cnf(308,plain,
    ( identity != identity
    | a2 != a2
    | double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity) != double_divide(double_divide(a3,identity),double_divide(c3,b3)) ),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[165,53]),79,81])]),
    [iquote('para_from,165.1.1,53.3.1.1,demod,79,81,flip.3')] ).

cnf(497,plain,
    double_divide(double_divide(double_divide(identity,A),double_divide(identity,B)),C) = double_divide(double_divide(double_divide(B,A),identity),C),
    inference(para_from,[status(thm),theory(equality)],[188,134]),
    [iquote('para_from,188.1.1,134.1.1.1')] ).

cnf(513,plain,
    double_divide(double_divide(double_divide(A,B),identity),C) = double_divide(double_divide(double_divide(identity,B),double_divide(identity,A)),C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[497])]),
    [iquote('copy,497,flip.1')] ).

cnf(595,plain,
    double_divide(double_divide(A,double_divide(B,identity)),identity) = double_divide(B,double_divide(identity,A)),
    inference(para_into,[status(thm),theory(equality)],[189,73]),
    [iquote('para_into,189.1.1,73.1.1')] ).

cnf(599,plain,
    ( identity != identity
    | a2 != a2
    | double_divide(double_divide(b3,a3),double_divide(identity,c3)) != double_divide(double_divide(a3,identity),double_divide(c3,b3)) ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[308]),595]),
    [iquote('back_demod,308,demod,595')] ).

cnf(1279,plain,
    double_divide(double_divide(double_divide(A,identity),double_divide(identity,B)),C) = double_divide(double_divide(double_divide(B,A),identity),C),
    inference(para_from,[status(thm),theory(equality)],[223,134]),
    [iquote('para_from,223.1.1,134.1.1.1')] ).

cnf(1291,plain,
    double_divide(double_divide(double_divide(A,B),identity),C) = double_divide(double_divide(double_divide(B,identity),double_divide(identity,A)),C),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[1279])]),
    [iquote('copy,1279,flip.1')] ).

cnf(1414,plain,
    double_divide(double_divide(double_divide(A,B),identity),C) = double_divide(A,double_divide(identity,double_divide(B,C))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[135,116]),79])]),
    [iquote('para_from,135.1.1,116.1.1.2,demod,79,flip.1')] ).

cnf(1432,plain,
    double_divide(double_divide(double_divide(A,identity),double_divide(identity,B)),C) = double_divide(B,double_divide(identity,double_divide(A,C))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1291]),1414])]),
    [iquote('back_demod,1291,demod,1414,flip.1')] ).

cnf(1451,plain,
    double_divide(double_divide(double_divide(identity,A),double_divide(identity,B)),C) = double_divide(B,double_divide(identity,double_divide(A,C))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[513]),1414])]),
    [iquote('back_demod,513,demod,1414,flip.1')] ).

cnf(1534,plain,
    double_divide(double_divide(A,double_divide(B,C)),identity) = double_divide(B,double_divide(identity,double_divide(C,double_divide(identity,A)))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[228,220]),1432])]),
    [iquote('para_into,228.1.1.1,220.1.1,demod,1432,flip.1')] ).

cnf(1537,plain,
    double_divide(double_divide(A,identity),double_divide(B,C)) = double_divide(double_divide(C,A),double_divide(identity,B)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[228,211]),1451,1534,63]),
    [iquote('para_into,228.1.1.2,211.1.1,demod,1451,1534,63')] ).

cnf(1547,plain,
    double_divide(double_divide(A,B),double_divide(identity,C)) = double_divide(double_divide(B,identity),double_divide(C,A)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[1537])]),
    [iquote('copy,1537,flip.1')] ).

cnf(3913,plain,
    $false,
    inference(hyper,[status(thm)],[599,2,2,1547]),
    [iquote('hyper,599,2,2,1547')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : GRP079-1 : TPTP v8.1.0. Bugfixed v2.3.0.
% 0.11/0.12  % Command  : otter-tptp-script %s
% 0.13/0.33  % Computer : n018.cluster.edu
% 0.13/0.33  % Model    : x86_64 x86_64
% 0.13/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.33  % Memory   : 8042.1875MB
% 0.13/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.33  % CPULimit : 300
% 0.13/0.33  % WCLimit  : 300
% 0.13/0.33  % DateTime : Wed Jul 27 05:08:46 EDT 2022
% 0.13/0.33  % CPUTime  : 
% 2.32/2.52  ----- Otter 3.3f, August 2004 -----
% 2.32/2.52  The process was started by sandbox on n018.cluster.edu,
% 2.32/2.52  Wed Jul 27 05:08:46 2022
% 2.32/2.52  The command was "./otter".  The process ID is 29237.
% 2.32/2.52  
% 2.32/2.52  set(prolog_style_variables).
% 2.32/2.52  set(auto).
% 2.32/2.52     dependent: set(auto1).
% 2.32/2.52     dependent: set(process_input).
% 2.32/2.52     dependent: clear(print_kept).
% 2.32/2.52     dependent: clear(print_new_demod).
% 2.32/2.52     dependent: clear(print_back_demod).
% 2.32/2.52     dependent: clear(print_back_sub).
% 2.32/2.52     dependent: set(control_memory).
% 2.32/2.52     dependent: assign(max_mem, 12000).
% 2.32/2.52     dependent: assign(pick_given_ratio, 4).
% 2.32/2.52     dependent: assign(stats_level, 1).
% 2.32/2.52     dependent: assign(max_seconds, 10800).
% 2.32/2.52  clear(print_given).
% 2.32/2.52  
% 2.32/2.52  list(usable).
% 2.32/2.52  0 [] A=A.
% 2.32/2.52  0 [] double_divide(double_divide(identity,X),double_divide(double_divide(double_divide(Y,Z),double_divide(identity,identity)),double_divide(X,Z)))=Y.
% 2.32/2.52  0 [] multiply(X,Y)=double_divide(double_divide(Y,X),identity).
% 2.32/2.52  0 [] inverse(X)=double_divide(X,identity).
% 2.32/2.52  0 [] identity=double_divide(X,inverse(X)).
% 2.32/2.52  0 [] multiply(inverse(a1),a1)!=identity|multiply(identity,a2)!=a2|multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3)).
% 2.32/2.52  end_of_list.
% 2.32/2.52  
% 2.32/2.52  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=3.
% 2.32/2.52  
% 2.32/2.52  This is a Horn set with equality.  The strategy will be
% 2.32/2.52  Knuth-Bendix and hyper_res, with positive clauses in
% 2.32/2.52  sos and nonpositive clauses in usable.
% 2.32/2.52  
% 2.32/2.52     dependent: set(knuth_bendix).
% 2.32/2.52     dependent: set(anl_eq).
% 2.32/2.52     dependent: set(para_from).
% 2.32/2.52     dependent: set(para_into).
% 2.32/2.52     dependent: clear(para_from_right).
% 2.32/2.52     dependent: clear(para_into_right).
% 2.32/2.52     dependent: set(para_from_vars).
% 2.32/2.52     dependent: set(eq_units_both_ways).
% 2.32/2.52     dependent: set(dynamic_demod_all).
% 2.32/2.52     dependent: set(dynamic_demod).
% 2.32/2.52     dependent: set(order_eq).
% 2.32/2.52     dependent: set(back_demod).
% 2.32/2.52     dependent: set(lrpo).
% 2.32/2.52     dependent: set(hyper_res).
% 2.32/2.52     dependent: clear(order_hyper).
% 2.32/2.52  
% 2.32/2.52  ------------> process usable:
% 2.32/2.52  ** KEPT (pick-wt=22): 1 [] multiply(inverse(a1),a1)!=identity|multiply(identity,a2)!=a2|multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3)).
% 2.32/2.52  
% 2.32/2.52  ------------> process sos:
% 2.32/2.52  ** KEPT (pick-wt=3): 2 [] A=A.
% 2.32/2.52  ** KEPT (pick-wt=17): 3 [] double_divide(double_divide(identity,A),double_divide(double_divide(double_divide(B,C),double_divide(identity,identity)),double_divide(A,C)))=B.
% 2.32/2.52  ---> New Demodulator: 4 [new_demod,3] double_divide(double_divide(identity,A),double_divide(double_divide(double_divide(B,C),double_divide(identity,identity)),double_divide(A,C)))=B.
% 2.32/2.52  ** KEPT (pick-wt=9): 5 [] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 2.32/2.52  ---> New Demodulator: 6 [new_demod,5] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 2.32/2.52  ** KEPT (pick-wt=6): 7 [] inverse(A)=double_divide(A,identity).
% 2.32/2.52  ---> New Demodulator: 8 [new_demod,7] inverse(A)=double_divide(A,identity).
% 2.32/2.52  ** KEPT (pick-wt=7): 10 [copy,9,demod,8,flip.1] double_divide(A,double_divide(A,identity))=identity.
% 2.32/2.52  ---> New Demodulator: 11 [new_demod,10] double_divide(A,double_divide(A,identity))=identity.
% 2.32/2.52    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 2.32/2.52  >>>> Starting back demodulation with 4.
% 2.32/2.52  >>>> Starting back demodulation with 6.
% 2.32/2.52      >> back demodulating 1 with 6.
% 2.32/2.52  >>>> Starting back demodulation with 8.
% 2.32/2.52  >>>> Starting back demodulation with 11.
% 2.32/2.52  
% 2.32/2.52  ======= end of input processing =======
% 2.32/2.52  
% 2.32/2.52  =========== start of search ===========
% 2.32/2.52  
% 2.32/2.52  
% 2.32/2.52  Resetting weight limit to 15.
% 2.32/2.52  
% 2.32/2.52  
% 2.32/2.52  Resetting weight limit to 15.
% 2.32/2.52  
% 2.32/2.52  sos_size=1517
% 2.32/2.52  
% 2.32/2.52  -------- PROOF -------- 
% 2.32/2.52  
% 2.32/2.52  -----> EMPTY CLAUSE at   0.64 sec ----> 3913 [hyper,599,2,2,1547] $F.
% 2.32/2.52  
% 2.32/2.52  Length of proof is 53.  Level of proof is 18.
% 2.32/2.52  
% 2.32/2.52  ---------------- PROOF ----------------
% 2.32/2.52  % SZS status Unsatisfiable
% 2.32/2.52  % SZS output start Refutation
% See solution above
% 2.32/2.52  ------------ end of proof -------------
% 2.32/2.52  
% 2.32/2.52  
% 2.32/2.52  Search stopped by max_proofs option.
% 2.32/2.52  
% 2.32/2.52  
% 2.32/2.52  Search stopped by max_proofs option.
% 2.32/2.52  
% 2.32/2.52  ============ end of search ============
% 2.32/2.52  
% 2.32/2.52  -------------- statistics -------------
% 2.32/2.52  clauses given                241
% 2.32/2.52  clauses generated          92619
% 2.32/2.52  clauses kept                2844
% 2.32/2.52  clauses forward subsumed   65209
% 2.32/2.52  clauses back subsumed         78
% 2.32/2.52  Kbytes malloced             4882
% 2.32/2.52  
% 2.32/2.52  ----------- times (seconds) -----------
% 2.32/2.52  user CPU time          0.64          (0 hr, 0 min, 0 sec)
% 2.32/2.52  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 2.32/2.52  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 2.32/2.52  
% 2.32/2.52  That finishes the proof of the theorem.
% 2.32/2.52  
% 2.32/2.52  Process 29237 finished Wed Jul 27 05:08:48 2022
% 2.32/2.52  Otter interrupted
% 2.32/2.52  PROOF FOUND
%------------------------------------------------------------------------------