TSTP Solution File: GRP078-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP078-1 : TPTP v8.1.0. Bugfixed v2.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n026.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:56:00 EDT 2022

% Result   : Unsatisfiable 2.14s 2.35s
% Output   : Refutation 2.14s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   21
%            Number of leaves      :    6
% Syntax   : Number of clauses     :   64 (  58 unt;   0 nHn;  10 RR)
%            Number of literals    :   76 (  75 equ;  18 neg)
%            Maximal clause size   :    3 (   1 avg)
%            Maximal term depth    :    9 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    9 (   9 usr;   6 con; 0-2 aty)
%            Number of variables   :   98 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( multiply(inverse(a1),a1) != identity
    | multiply(identity,a2) != a2
    | multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3)) ),
    file('GRP078-1.p',unknown),
    [] ).

cnf(2,axiom,
    A = A,
    file('GRP078-1.p',unknown),
    [] ).

cnf(4,axiom,
    double_divide(double_divide(identity,A),double_divide(identity,double_divide(double_divide(double_divide(A,B),identity),double_divide(C,B)))) = C,
    file('GRP078-1.p',unknown),
    [] ).

cnf(6,axiom,
    multiply(A,B) = double_divide(double_divide(B,A),identity),
    file('GRP078-1.p',unknown),
    [] ).

cnf(8,axiom,
    inverse(A) = double_divide(A,identity),
    file('GRP078-1.p',unknown),
    [] ).

cnf(9,axiom,
    identity = double_divide(A,inverse(A)),
    file('GRP078-1.p',unknown),
    [] ).

cnf(11,plain,
    double_divide(A,double_divide(A,identity)) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(copy,[status(thm)],[9]),8])]),
    [iquote('copy,9,demod,8,flip.1')] ).

cnf(12,plain,
    ( double_divide(identity,identity) != identity
    | double_divide(double_divide(a2,identity),identity) != a2
    | double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity) != double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity) ),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1]),8,6,11,6,6,6,6,6])]),
    [iquote('back_demod,1,demod,8,6,11,6,6,6,6,6,flip.3')] ).

cnf(15,plain,
    double_divide(double_divide(identity,A),double_divide(identity,double_divide(double_divide(identity,identity),double_divide(B,double_divide(A,identity))))) = B,
    inference(para_into,[status(thm),theory(equality)],[4,11]),
    [iquote('para_into,3.1.1.2.2.1.1,10.1.1')] ).

cnf(17,plain,
    double_divide(double_divide(identity,double_divide(identity,A)),double_divide(identity,double_divide(double_divide(B,identity),double_divide(C,double_divide(identity,double_divide(double_divide(double_divide(A,D),identity),double_divide(B,D))))))) = C,
    inference(para_into,[status(thm),theory(equality)],[4,4]),
    [iquote('para_into,3.1.1.2.2.1.1,3.1.1')] ).

cnf(19,plain,
    double_divide(double_divide(identity,A),double_divide(identity,double_divide(double_divide(double_divide(A,double_divide(B,identity)),identity),identity))) = B,
    inference(para_into,[status(thm),theory(equality)],[4,11]),
    [iquote('para_into,3.1.1.2.2.2,10.1.1')] ).

cnf(23,plain,
    double_divide(double_divide(identity,A),double_divide(identity,identity)) = double_divide(double_divide(A,identity),identity),
    inference(para_into,[status(thm),theory(equality)],[4,11]),
    [iquote('para_into,3.1.1.2.2,10.1.1')] ).

cnf(24,plain,
    double_divide(double_divide(A,identity),identity) = double_divide(double_divide(identity,A),double_divide(identity,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[23])]),
    [iquote('copy,23,flip.1')] ).

cnf(25,plain,
    double_divide(double_divide(double_divide(identity,identity),identity),identity) = identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[23,11]),11])]),
    [iquote('para_into,23.1.1.1,10.1.1,demod,11,flip.1')] ).

cnf(27,plain,
    double_divide(double_divide(identity,A),double_divide(identity,double_divide(double_divide(double_divide(A,double_divide(identity,identity)),identity),double_divide(double_divide(B,identity),identity)))) = double_divide(identity,B),
    inference(para_from,[status(thm),theory(equality)],[23,4]),
    [iquote('para_from,23.1.1,3.1.1.2.2.2')] ).

cnf(33,plain,
    double_divide(identity,double_divide(identity,double_divide(identity,double_divide(A,identity)))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[25,4]),11]),
    [iquote('para_from,25.1.1,3.1.1.2.2.1,demod,11')] ).

cnf(38,plain,
    double_divide(double_divide(identity,identity),identity) = double_divide(identity,identity),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[33,25]),11])]),
    [iquote('para_into,33.1.1.2.2.2,25.1.1,demod,11,flip.1')] ).

cnf(44,plain,
    double_divide(identity,identity) = identity,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[25]),38,38]),
    [iquote('back_demod,25,demod,38,38')] ).

cnf(49,plain,
    double_divide(A,identity) = double_divide(identity,A),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[27]),44,4]),
    [iquote('back_demod,27,demod,44,4')] ).

cnf(50,plain,
    double_divide(double_divide(A,identity),identity) = double_divide(double_divide(identity,A),identity),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[24]),44]),
    [iquote('back_demod,24,demod,44')] ).

cnf(52,plain,
    double_divide(double_divide(identity,A),double_divide(identity,double_divide(identity,double_divide(B,double_divide(A,identity))))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[15]),44]),
    [iquote('back_demod,15,demod,44')] ).

cnf(56,plain,
    ( identity != identity
    | double_divide(double_divide(a2,identity),identity) != a2
    | double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity) != double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity) ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[12]),44]),
    [iquote('back_demod,12,demod,44')] ).

cnf(57,plain,
    double_divide(identity,A) = double_divide(A,identity),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[49])]),
    [iquote('copy,49,flip.1')] ).

cnf(60,plain,
    double_divide(identity,double_divide(identity,double_divide(double_divide(A,identity),double_divide(B,double_divide(identity,double_divide(identity,double_divide(A,identity))))))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[33,4]),44]),
    [iquote('para_from,33.1.1,3.1.1.2.2.1.1,demod,44')] ).

cnf(76,plain,
    double_divide(double_divide(identity,double_divide(identity,A)),double_divide(identity,double_divide(double_divide(B,identity),double_divide(C,double_divide(identity,double_divide(identity,double_divide(B,double_divide(A,identity)))))))) = C,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[17,11]),44]),
    [iquote('para_into,17.1.1.2.2.2.2.2.1.1,10.1.1,demod,44')] ).

cnf(80,plain,
    double_divide(double_divide(identity,double_divide(identity,A)),double_divide(identity,double_divide(identity,double_divide(B,double_divide(identity,double_divide(double_divide(double_divide(A,identity),identity),identity)))))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[17,44]),44]),
    [iquote('para_into,17.1.1.2.2.2.2.2.2,43.1.1,demod,44')] ).

cnf(104,plain,
    double_divide(A,double_divide(identity,A)) = identity,
    inference(para_from,[status(thm),theory(equality)],[49,11]),
    [iquote('para_from,49.1.1,10.1.1.2')] ).

cnf(108,plain,
    double_divide(double_divide(identity,A),double_divide(identity,double_divide(double_divide(identity,double_divide(A,B)),double_divide(C,B)))) = C,
    inference(para_from,[status(thm),theory(equality)],[49,4]),
    [iquote('para_from,49.1.1,3.1.1.2.2.1')] ).

cnf(119,plain,
    double_divide(identity,double_divide(identity,double_divide(double_divide(A,identity),identity))) = A,
    inference(para_from,[status(thm),theory(equality)],[57,33]),
    [iquote('para_from,57.1.1,33.1.1.2.2')] ).

cnf(134,plain,
    double_divide(double_divide(identity,A),double_divide(identity,double_divide(double_divide(double_divide(A,B),identity),double_divide(B,identity)))) = identity,
    inference(para_from,[status(thm),theory(equality)],[57,4]),
    [iquote('para_from,57.1.1,3.1.1.2.2.2')] ).

cnf(142,plain,
    double_divide(double_divide(identity,double_divide(identity,double_divide(A,identity))),A) = identity,
    inference(para_into,[status(thm),theory(equality)],[104,33]),
    [iquote('para_into,104.1.1.2,33.1.1')] ).

cnf(157,plain,
    double_divide(double_divide(identity,A),identity) = double_divide(identity,double_divide(A,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[50,49])]),
    [iquote('para_into,50.1.1,49.1.1,flip.1')] ).

cnf(167,plain,
    double_divide(identity,double_divide(A,identity)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[19,104]),44,157,157,119]),
    [iquote('para_into,19.1.1.1,104.1.1,demod,44,157,157,119')] ).

cnf(170,plain,
    double_divide(A,double_divide(double_divide(double_divide(identity,A),double_divide(B,identity)),identity)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[19,33]),167,167]),
    [iquote('para_into,19.1.1.1,33.1.1,demod,167,167')] ).

cnf(177,plain,
    double_divide(double_divide(A,identity),identity) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[19,57]),44,167,167]),
    [iquote('para_into,19.1.1.2.2.1.1,57.1.1,demod,44,167,167')] ).

cnf(191,plain,
    double_divide(double_divide(identity,A),identity) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[157]),167]),
    [iquote('back_demod,156,demod,167')] ).

cnf(198,plain,
    double_divide(double_divide(identity,A),A) = identity,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[142]),167]),
    [iquote('back_demod,142,demod,167')] ).

cnf(203,plain,
    double_divide(identity,double_divide(identity,A)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[119]),177]),
    [iquote('back_demod,118,demod,177')] ).

cnf(209,plain,
    double_divide(A,double_divide(B,A)) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[80]),203,177,167,203]),
    [iquote('back_demod,80,demod,203,177,167,203')] ).

cnf(216,plain,
    double_divide(double_divide(A,identity),double_divide(B,double_divide(identity,A))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[60]),209,203]),
    [iquote('back_demod,60,demod,209,203')] ).

cnf(220,plain,
    ( identity != identity
    | a2 != a2
    | double_divide(double_divide(double_divide(double_divide(c3,b3),identity),a3),identity) != double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity) ),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[56]),177]),
    [iquote('back_demod,56,demod,177')] ).

cnf(252,plain,
    double_divide(A,double_divide(identity,double_divide(double_divide(B,identity),double_divide(C,double_divide(B,double_divide(A,identity)))))) = C,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[76]),203,203]),
    [iquote('back_demod,76,demod,203,203')] ).

cnf(254,plain,
    double_divide(double_divide(identity,A),double_divide(B,double_divide(A,identity))) = B,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[52]),203]),
    [iquote('back_demod,52,demod,203')] ).

cnf(269,plain,
    double_divide(double_divide(identity,A),double_divide(identity,double_divide(A,B))) = double_divide(identity,B),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[108,198]),191]),
    [iquote('para_into,108.1.1.2.2.2,198.1.1,demod,191')] ).

cnf(278,plain,
    double_divide(double_divide(A,B),A) = B,
    inference(para_into,[status(thm),theory(equality)],[209,209]),
    [iquote('para_into,208.1.1.2,208.1.1')] ).

cnf(293,plain,
    double_divide(double_divide(A,identity),B) = double_divide(double_divide(identity,A),B),
    inference(para_into,[status(thm),theory(equality)],[216,278]),
    [iquote('para_into,216.1.1.2,277.1.1')] ).

cnf(294,plain,
    double_divide(double_divide(identity,A),B) = double_divide(double_divide(A,identity),B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[293])]),
    [iquote('copy,293,flip.1')] ).

cnf(315,plain,
    double_divide(double_divide(double_divide(A,B),identity),double_divide(B,identity)) = double_divide(identity,A),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[134,216]),177]),
    [iquote('para_from,134.1.1,216.1.1.2,demod,177')] ).

cnf(331,plain,
    double_divide(A,double_divide(double_divide(double_divide(identity,A),B),identity)) = double_divide(identity,B),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[170,294]),177]),
    [iquote('para_into,170.1.1.2.1.2,294.1.1,demod,177')] ).

cnf(375,plain,
    double_divide(A,double_divide(identity,B)) = double_divide(identity,double_divide(B,double_divide(A,identity))),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[269,254]),203]),
    [iquote('para_into,269.1.1.2.2,254.1.1,demod,203')] ).

cnf(378,plain,
    double_divide(identity,double_divide(A,double_divide(B,identity))) = double_divide(B,double_divide(identity,A)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[375])]),
    [iquote('copy,375,flip.1')] ).

cnf(403,plain,
    double_divide(double_divide(A,identity),double_divide(B,identity)) = double_divide(identity,double_divide(B,A)),
    inference(para_into,[status(thm),theory(equality)],[315,278]),
    [iquote('para_into,315.1.1.1.1,277.1.1')] ).

cnf(408,plain,
    double_divide(identity,double_divide(A,B)) = double_divide(double_divide(B,identity),double_divide(A,identity)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[403])]),
    [iquote('copy,403,flip.1')] ).

cnf(409,plain,
    double_divide(double_divide(identity,A),double_divide(identity,B)) = double_divide(double_divide(B,A),identity),
    inference(para_from,[status(thm),theory(equality)],[315,254]),
    [iquote('para_from,315.1.1,254.1.1.2')] ).

cnf(422,plain,
    double_divide(double_divide(double_divide(identity,A),B),identity) = double_divide(double_divide(identity,B),A),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[331,278])]),
    [iquote('para_from,331.1.1,277.1.1.1,flip.1')] ).

cnf(455,plain,
    ( identity != identity
    | a2 != a2
    | double_divide(double_divide(c3,double_divide(double_divide(b3,a3),identity)),identity) != double_divide(double_divide(identity,a3),double_divide(c3,b3)) ),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[220,49]),422])]),
    [iquote('para_into,220.3.1.1.1,49.1.1,demod,422,flip.3')] ).

cnf(459,plain,
    double_divide(A,B) = double_divide(identity,double_divide(double_divide(identity,B),double_divide(A,identity))),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[375,375]),44,209]),
    [iquote('para_into,375.1.1.2,375.1.1,demod,44,209')] ).

cnf(461,plain,
    double_divide(identity,double_divide(double_divide(identity,A),double_divide(B,identity))) = double_divide(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[459])]),
    [iquote('copy,459,flip.1')] ).

cnf(508,plain,
    double_divide(double_divide(A,double_divide(B,identity)),identity) = double_divide(B,double_divide(identity,A)),
    inference(para_into,[status(thm),theory(equality)],[378,57]),
    [iquote('para_into,378.1.1,57.1.1')] ).

cnf(510,plain,
    ( identity != identity
    | a2 != a2
    | double_divide(double_divide(identity,a3),double_divide(c3,b3)) != double_divide(double_divide(b3,a3),double_divide(identity,c3)) ),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[455]),508])]),
    [iquote('back_demod,455,demod,508,flip.3')] ).

cnf(876,plain,
    double_divide(double_divide(A,double_divide(B,identity)),C) = double_divide(B,double_divide(identity,double_divide(double_divide(A,identity),C))),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[252,278])]),
    [iquote('para_into,252.1.1.2.2.2,277.1.1,flip.1')] ).

cnf(892,plain,
    double_divide(double_divide(A,double_divide(B,C)),identity) = double_divide(B,double_divide(identity,double_divide(C,double_divide(identity,A)))),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[409,408]),876,177])]),
    [iquote('para_into,409.1.1.1,408.1.1,demod,876,177,flip.1')] ).

cnf(1130,plain,
    double_divide(double_divide(identity,A),double_divide(B,C)) = double_divide(double_divide(C,A),double_divide(identity,B)),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[461,409]),876,278,892,203]),
    [iquote('para_from,461.1.1,409.1.1.2,demod,876,278,892,203')] ).

cnf(2834,plain,
    $false,
    inference(hyper,[status(thm)],[510,2,2,1130]),
    [iquote('hyper,510,2,2,1130')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.10/0.12  % Problem  : GRP078-1 : TPTP v8.1.0. Bugfixed v2.3.0.
% 0.10/0.13  % Command  : otter-tptp-script %s
% 0.13/0.33  % Computer : n026.cluster.edu
% 0.13/0.33  % Model    : x86_64 x86_64
% 0.13/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.33  % Memory   : 8042.1875MB
% 0.13/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.33  % CPULimit : 300
% 0.13/0.33  % WCLimit  : 300
% 0.13/0.33  % DateTime : Wed Jul 27 05:24:54 EDT 2022
% 0.13/0.33  % CPUTime  : 
% 2.14/2.35  ----- Otter 3.3f, August 2004 -----
% 2.14/2.35  The process was started by sandbox2 on n026.cluster.edu,
% 2.14/2.35  Wed Jul 27 05:24:54 2022
% 2.14/2.35  The command was "./otter".  The process ID is 1766.
% 2.14/2.35  
% 2.14/2.35  set(prolog_style_variables).
% 2.14/2.35  set(auto).
% 2.14/2.35     dependent: set(auto1).
% 2.14/2.35     dependent: set(process_input).
% 2.14/2.35     dependent: clear(print_kept).
% 2.14/2.35     dependent: clear(print_new_demod).
% 2.14/2.35     dependent: clear(print_back_demod).
% 2.14/2.35     dependent: clear(print_back_sub).
% 2.14/2.35     dependent: set(control_memory).
% 2.14/2.35     dependent: assign(max_mem, 12000).
% 2.14/2.35     dependent: assign(pick_given_ratio, 4).
% 2.14/2.35     dependent: assign(stats_level, 1).
% 2.14/2.35     dependent: assign(max_seconds, 10800).
% 2.14/2.35  clear(print_given).
% 2.14/2.35  
% 2.14/2.35  list(usable).
% 2.14/2.35  0 [] A=A.
% 2.14/2.35  0 [] double_divide(double_divide(identity,X),double_divide(identity,double_divide(double_divide(double_divide(X,Y),identity),double_divide(Z,Y))))=Z.
% 2.14/2.35  0 [] multiply(X,Y)=double_divide(double_divide(Y,X),identity).
% 2.14/2.35  0 [] inverse(X)=double_divide(X,identity).
% 2.14/2.35  0 [] identity=double_divide(X,inverse(X)).
% 2.14/2.35  0 [] multiply(inverse(a1),a1)!=identity|multiply(identity,a2)!=a2|multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3)).
% 2.14/2.35  end_of_list.
% 2.14/2.35  
% 2.14/2.35  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=3.
% 2.14/2.35  
% 2.14/2.35  This is a Horn set with equality.  The strategy will be
% 2.14/2.35  Knuth-Bendix and hyper_res, with positive clauses in
% 2.14/2.35  sos and nonpositive clauses in usable.
% 2.14/2.35  
% 2.14/2.35     dependent: set(knuth_bendix).
% 2.14/2.35     dependent: set(anl_eq).
% 2.14/2.35     dependent: set(para_from).
% 2.14/2.35     dependent: set(para_into).
% 2.14/2.35     dependent: clear(para_from_right).
% 2.14/2.35     dependent: clear(para_into_right).
% 2.14/2.35     dependent: set(para_from_vars).
% 2.14/2.35     dependent: set(eq_units_both_ways).
% 2.14/2.35     dependent: set(dynamic_demod_all).
% 2.14/2.35     dependent: set(dynamic_demod).
% 2.14/2.35     dependent: set(order_eq).
% 2.14/2.35     dependent: set(back_demod).
% 2.14/2.35     dependent: set(lrpo).
% 2.14/2.35     dependent: set(hyper_res).
% 2.14/2.35     dependent: clear(order_hyper).
% 2.14/2.35  
% 2.14/2.35  ------------> process usable:
% 2.14/2.35  ** KEPT (pick-wt=22): 1 [] multiply(inverse(a1),a1)!=identity|multiply(identity,a2)!=a2|multiply(multiply(a3,b3),c3)!=multiply(a3,multiply(b3,c3)).
% 2.14/2.35  
% 2.14/2.35  ------------> process sos:
% 2.14/2.35  ** KEPT (pick-wt=3): 2 [] A=A.
% 2.14/2.35  ** KEPT (pick-wt=17): 3 [] double_divide(double_divide(identity,A),double_divide(identity,double_divide(double_divide(double_divide(A,B),identity),double_divide(C,B))))=C.
% 2.14/2.35  ---> New Demodulator: 4 [new_demod,3] double_divide(double_divide(identity,A),double_divide(identity,double_divide(double_divide(double_divide(A,B),identity),double_divide(C,B))))=C.
% 2.14/2.35  ** KEPT (pick-wt=9): 5 [] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 2.14/2.35  ---> New Demodulator: 6 [new_demod,5] multiply(A,B)=double_divide(double_divide(B,A),identity).
% 2.14/2.35  ** KEPT (pick-wt=6): 7 [] inverse(A)=double_divide(A,identity).
% 2.14/2.35  ---> New Demodulator: 8 [new_demod,7] inverse(A)=double_divide(A,identity).
% 2.14/2.35  ** KEPT (pick-wt=7): 10 [copy,9,demod,8,flip.1] double_divide(A,double_divide(A,identity))=identity.
% 2.14/2.35  ---> New Demodulator: 11 [new_demod,10] double_divide(A,double_divide(A,identity))=identity.
% 2.14/2.35    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 2.14/2.35  >>>> Starting back demodulation with 4.
% 2.14/2.35  >>>> Starting back demodulation with 6.
% 2.14/2.35      >> back demodulating 1 with 6.
% 2.14/2.35  >>>> Starting back demodulation with 8.
% 2.14/2.35  >>>> Starting back demodulation with 11.
% 2.14/2.35  
% 2.14/2.35  ======= end of input processing =======
% 2.14/2.35  
% 2.14/2.35  =========== start of search ===========
% 2.14/2.35  
% 2.14/2.35  -------- PROOF -------- 
% 2.14/2.35  
% 2.14/2.35  -----> EMPTY CLAUSE at   0.26 sec ----> 2834 [hyper,510,2,2,1130] $F.
% 2.14/2.35  
% 2.14/2.35  Length of proof is 57.  Level of proof is 20.
% 2.14/2.35  
% 2.14/2.35  ---------------- PROOF ----------------
% 2.14/2.35  % SZS status Unsatisfiable
% 2.14/2.35  % SZS output start Refutation
% See solution above
% 2.14/2.35  ------------ end of proof -------------
% 2.14/2.35  
% 2.14/2.35  
% 2.14/2.35  Search stopped by max_proofs option.
% 2.14/2.35  
% 2.14/2.35  
% 2.14/2.35  Search stopped by max_proofs option.
% 2.14/2.35  
% 2.14/2.35  ============ end of search ============
% 2.14/2.35  
% 2.14/2.35  -------------- statistics -------------
% 2.14/2.35  clauses given                146
% 2.14/2.35  clauses generated          20113
% 2.14/2.35  clauses kept                2169
% 2.14/2.35  clauses forward subsumed   20127
% 2.14/2.35  clauses back subsumed         80
% 2.14/2.35  Kbytes malloced             3906
% 2.14/2.35  
% 2.14/2.35  ----------- times (seconds) -----------
% 2.14/2.35  user CPU time          0.26          (0 hr, 0 min, 0 sec)
% 2.14/2.35  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 2.14/2.35  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 2.14/2.35  
% 2.14/2.35  That finishes the proof of the theorem.
% 2.14/2.35  
% 2.14/2.35  Process 1766 finished Wed Jul 27 05:24:56 2022
% 2.14/2.35  Otter interrupted
% 2.14/2.35  PROOF FOUND
%------------------------------------------------------------------------------