TSTP Solution File: GRP077-1 by iProver---3.9

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : iProver---3.9
% Problem  : GRP077-1 : TPTP v8.1.2. Bugfixed v2.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_iprover %s %d THM

% Computer : n006.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Fri May  3 02:20:53 EDT 2024

% Result   : Unsatisfiable 7.66s 1.68s
% Output   : CNFRefutation 7.66s
% Verified : 
% SZS Type : ERROR: Analysing output (Could not find formula named definition)

% Comments : 
%------------------------------------------------------------------------------
cnf(c_49,plain,
    double_divide(X0,double_divide(double_divide(double_divide(identity,double_divide(double_divide(X0,identity),double_divide(X1,X2))),X1),identity)) = X2,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',single_axiom) ).

cnf(c_50,plain,
    double_divide(double_divide(X0,X1),identity) = multiply(X1,X0),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',multiply) ).

cnf(c_51,plain,
    double_divide(X0,identity) = inverse(X0),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',inverse) ).

cnf(c_52,plain,
    double_divide(X0,inverse(X0)) = identity,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',identity) ).

cnf(c_53,negated_conjecture,
    ( multiply(multiply(a3,b3),c3) != multiply(a3,multiply(b3,c3))
    | multiply(inverse(a1),a1) != identity
    | multiply(identity,a2) != a2 ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',prove_these_axioms) ).

cnf(c_72,plain,
    inverse(double_divide(X0,X1)) = multiply(X1,X0),
    inference(demodulation,[status(thm)],[c_50,c_51]) ).

cnf(c_73,plain,
    double_divide(X0,double_divide(double_divide(double_divide(identity,double_divide(inverse(X0),double_divide(X1,X2))),X1),identity)) = X2,
    inference(light_normalisation,[status(thm)],[c_49,c_51]) ).

cnf(c_74,plain,
    double_divide(X0,multiply(X1,double_divide(identity,double_divide(inverse(X0),double_divide(X1,X2))))) = X2,
    inference(demodulation,[status(thm)],[c_73,c_51,c_72]) ).

cnf(c_85,plain,
    multiply(a3,b3) = sP0_iProver_def,
    definition ).

cnf(c_86,plain,
    multiply(sP0_iProver_def,c3) = sP1_iProver_def,
    definition ).

cnf(c_87,plain,
    multiply(b3,c3) = sP2_iProver_def,
    definition ).

cnf(c_88,plain,
    multiply(a3,sP2_iProver_def) = sP3_iProver_def,
    definition ).

cnf(c_89,plain,
    inverse(a1) = sP4_iProver_def,
    definition ).

cnf(c_90,plain,
    multiply(sP4_iProver_def,a1) = sP5_iProver_def,
    definition ).

cnf(c_91,plain,
    multiply(identity,a2) = sP6_iProver_def,
    definition ).

cnf(c_92,negated_conjecture,
    ( sP1_iProver_def != sP3_iProver_def
    | sP5_iProver_def != identity
    | sP6_iProver_def != a2 ),
    inference(demodulation,[status(thm)],[c_53,c_91,c_89,c_90,c_87,c_88,c_85,c_86]) ).

cnf(c_157,plain,
    multiply(identity,X0) = inverse(inverse(X0)),
    inference(superposition,[status(thm)],[c_51,c_72]) ).

cnf(c_159,plain,
    double_divide(a1,sP4_iProver_def) = identity,
    inference(superposition,[status(thm)],[c_89,c_52]) ).

cnf(c_160,plain,
    double_divide(double_divide(X0,X1),multiply(X1,X0)) = identity,
    inference(superposition,[status(thm)],[c_72,c_52]) ).

cnf(c_161,plain,
    multiply(inverse(X0),X0) = inverse(identity),
    inference(superposition,[status(thm)],[c_52,c_72]) ).

cnf(c_164,plain,
    double_divide(a1,multiply(X0,double_divide(identity,double_divide(sP4_iProver_def,double_divide(X0,X1))))) = X1,
    inference(superposition,[status(thm)],[c_89,c_74]) ).

cnf(c_165,plain,
    double_divide(double_divide(X0,X1),multiply(X2,double_divide(identity,double_divide(multiply(X1,X0),double_divide(X2,X3))))) = X3,
    inference(superposition,[status(thm)],[c_72,c_74]) ).

cnf(c_166,plain,
    double_divide(X0,multiply(X1,double_divide(identity,double_divide(inverse(X0),inverse(X1))))) = identity,
    inference(superposition,[status(thm)],[c_51,c_74]) ).

cnf(c_167,plain,
    double_divide(X0,multiply(X1,double_divide(identity,double_divide(inverse(X0),identity)))) = inverse(X1),
    inference(superposition,[status(thm)],[c_52,c_74]) ).

cnf(c_178,plain,
    multiply(sP4_iProver_def,a1) = inverse(identity),
    inference(superposition,[status(thm)],[c_159,c_72]) ).

cnf(c_179,plain,
    inverse(identity) = sP5_iProver_def,
    inference(light_normalisation,[status(thm)],[c_178,c_90]) ).

cnf(c_182,plain,
    double_divide(identity,sP5_iProver_def) = identity,
    inference(superposition,[status(thm)],[c_179,c_52]) ).

cnf(c_185,plain,
    multiply(sP5_iProver_def,identity) = inverse(identity),
    inference(superposition,[status(thm)],[c_182,c_72]) ).

cnf(c_186,plain,
    multiply(sP5_iProver_def,identity) = sP5_iProver_def,
    inference(light_normalisation,[status(thm)],[c_185,c_179]) ).

cnf(c_188,plain,
    multiply(identity,a1) = inverse(sP4_iProver_def),
    inference(superposition,[status(thm)],[c_89,c_157]) ).

cnf(c_190,plain,
    multiply(identity,double_divide(X0,X1)) = inverse(multiply(X1,X0)),
    inference(superposition,[status(thm)],[c_72,c_157]) ).

cnf(c_206,plain,
    multiply(inverse(X0),X0) = sP5_iProver_def,
    inference(light_normalisation,[status(thm)],[c_161,c_179]) ).

cnf(c_209,plain,
    multiply(multiply(X0,X1),double_divide(X1,X0)) = sP5_iProver_def,
    inference(superposition,[status(thm)],[c_72,c_206]) ).

cnf(c_329,plain,
    double_divide(a1,multiply(X0,double_divide(identity,double_divide(sP4_iProver_def,identity)))) = inverse(X0),
    inference(superposition,[status(thm)],[c_52,c_164]) ).

cnf(c_330,plain,
    multiply(X0,double_divide(identity,double_divide(inverse(X1),double_divide(X0,X2)))) = double_divide(a1,multiply(X1,double_divide(identity,double_divide(sP4_iProver_def,X2)))),
    inference(superposition,[status(thm)],[c_74,c_164]) ).

cnf(c_481,plain,
    double_divide(identity,multiply(X0,double_divide(identity,double_divide(multiply(inverse(X1),X1),double_divide(X0,X2))))) = X2,
    inference(superposition,[status(thm)],[c_52,c_165]) ).

cnf(c_483,plain,
    double_divide(identity,multiply(X0,double_divide(identity,double_divide(multiply(multiply(X1,X2),double_divide(X2,X1)),double_divide(X0,X3))))) = X3,
    inference(superposition,[status(thm)],[c_160,c_165]) ).

cnf(c_494,plain,
    double_divide(double_divide(c3,b3),multiply(X0,double_divide(identity,double_divide(sP2_iProver_def,double_divide(X0,X1))))) = X1,
    inference(superposition,[status(thm)],[c_87,c_165]) ).

cnf(c_511,plain,
    double_divide(double_divide(X0,X1),multiply(X2,double_divide(identity,double_divide(multiply(X1,X0),identity)))) = inverse(X2),
    inference(superposition,[status(thm)],[c_52,c_165]) ).

cnf(c_746,plain,
    double_divide(X0,multiply(inverse(X0),double_divide(identity,identity))) = identity,
    inference(superposition,[status(thm)],[c_52,c_166]) ).

cnf(c_804,plain,
    double_divide(X0,multiply(inverse(X0),sP5_iProver_def)) = identity,
    inference(demodulation,[status(thm)],[c_746,c_51,c_179]) ).

cnf(c_805,plain,
    double_divide(sP5_iProver_def,sP5_iProver_def) = identity,
    inference(superposition,[status(thm)],[c_206,c_804]) ).

cnf(c_816,plain,
    double_divide(double_divide(X0,X1),multiply(X2,double_divide(identity,double_divide(multiply(X1,X0),identity)))) = multiply(inverse(X2),sP5_iProver_def),
    inference(superposition,[status(thm)],[c_804,c_165]) ).

cnf(c_819,plain,
    multiply(inverse(X0),sP5_iProver_def) = inverse(X0),
    inference(light_normalisation,[status(thm)],[c_816,c_511]) ).

cnf(c_910,plain,
    multiply(multiply(X0,X1),sP5_iProver_def) = multiply(X0,X1),
    inference(superposition,[status(thm)],[c_72,c_819]) ).

cnf(c_916,plain,
    inverse(sP5_iProver_def) = sP5_iProver_def,
    inference(superposition,[status(thm)],[c_819,c_206]) ).

cnf(c_928,plain,
    multiply(identity,sP5_iProver_def) = sP5_iProver_def,
    inference(superposition,[status(thm)],[c_916,c_157]) ).

cnf(c_1023,plain,
    double_divide(X0,multiply(X1,double_divide(identity,multiply(identity,X0)))) = inverse(X1),
    inference(demodulation,[status(thm)],[c_167,c_51,c_157]) ).

cnf(c_1033,plain,
    double_divide(sP5_iProver_def,multiply(X0,double_divide(identity,sP5_iProver_def))) = inverse(X0),
    inference(superposition,[status(thm)],[c_928,c_1023]) ).

cnf(c_1041,plain,
    double_divide(sP5_iProver_def,multiply(X0,identity)) = inverse(X0),
    inference(light_normalisation,[status(thm)],[c_1033,c_182]) ).

cnf(c_1094,plain,
    multiply(sP2_iProver_def,sP5_iProver_def) = sP2_iProver_def,
    inference(superposition,[status(thm)],[c_87,c_910]) ).

cnf(c_1096,plain,
    multiply(sP1_iProver_def,sP5_iProver_def) = sP1_iProver_def,
    inference(superposition,[status(thm)],[c_86,c_910]) ).

cnf(c_1460,plain,
    double_divide(sP5_iProver_def,sP5_iProver_def) = inverse(sP5_iProver_def),
    inference(superposition,[status(thm)],[c_186,c_1041]) ).

cnf(c_1464,plain,
    multiply(multiply(X0,identity),sP5_iProver_def) = inverse(inverse(X0)),
    inference(superposition,[status(thm)],[c_1041,c_72]) ).

cnf(c_1465,plain,
    identity = sP5_iProver_def,
    inference(light_normalisation,[status(thm)],[c_1460,c_805,c_916]) ).

cnf(c_1468,plain,
    multiply(multiply(X0,identity),sP5_iProver_def) = multiply(identity,X0),
    inference(light_normalisation,[status(thm)],[c_1464,c_157]) ).

cnf(c_1469,plain,
    double_divide(sP5_iProver_def,multiply(X0,sP5_iProver_def)) = inverse(X0),
    inference(demodulation,[status(thm)],[c_1041,c_1465]) ).

cnf(c_1484,plain,
    multiply(sP5_iProver_def,double_divide(X0,X1)) = inverse(multiply(X1,X0)),
    inference(demodulation,[status(thm)],[c_190,c_1465]) ).

cnf(c_1491,plain,
    double_divide(double_divide(X0,X1),multiply(X1,X0)) = sP5_iProver_def,
    inference(demodulation,[status(thm)],[c_160,c_1465]) ).

cnf(c_1495,plain,
    multiply(sP5_iProver_def,a1) = inverse(sP4_iProver_def),
    inference(demodulation,[status(thm)],[c_188,c_1465]) ).

cnf(c_1496,plain,
    multiply(sP5_iProver_def,X0) = inverse(inverse(X0)),
    inference(demodulation,[status(thm)],[c_157,c_1465]) ).

cnf(c_1501,plain,
    double_divide(X0,inverse(X0)) = sP5_iProver_def,
    inference(demodulation,[status(thm)],[c_52,c_1465]) ).

cnf(c_1502,plain,
    double_divide(X0,sP5_iProver_def) = inverse(X0),
    inference(demodulation,[status(thm)],[c_51,c_1465]) ).

cnf(c_1503,plain,
    multiply(sP5_iProver_def,a2) = sP6_iProver_def,
    inference(demodulation,[status(thm)],[c_91,c_1465]) ).

cnf(c_1504,plain,
    ( a2 != sP6_iProver_def
    | sP1_iProver_def != sP3_iProver_def
    | sP5_iProver_def != sP5_iProver_def ),
    inference(demodulation,[status(thm)],[c_92,c_1465]) ).

cnf(c_1505,plain,
    ( a2 != sP6_iProver_def
    | sP1_iProver_def != sP3_iProver_def ),
    inference(equality_resolution_simp,[status(thm)],[c_1504]) ).

cnf(c_1542,plain,
    multiply(multiply(X0,sP5_iProver_def),sP5_iProver_def) = multiply(sP5_iProver_def,X0),
    inference(light_normalisation,[status(thm)],[c_1468,c_1465]) ).

cnf(c_1543,plain,
    multiply(X0,sP5_iProver_def) = multiply(sP5_iProver_def,X0),
    inference(demodulation,[status(thm)],[c_1542,c_910]) ).

cnf(c_1544,plain,
    multiply(sP5_iProver_def,multiply(X0,X1)) = multiply(X0,X1),
    inference(demodulation,[status(thm)],[c_910,c_1543]) ).

cnf(c_1545,plain,
    multiply(sP5_iProver_def,inverse(X0)) = inverse(X0),
    inference(demodulation,[status(thm)],[c_819,c_1543]) ).

cnf(c_1605,plain,
    double_divide(a1,multiply(X0,double_divide(sP5_iProver_def,double_divide(sP4_iProver_def,sP5_iProver_def)))) = inverse(X0),
    inference(light_normalisation,[status(thm)],[c_329,c_1465]) ).

cnf(c_1606,plain,
    double_divide(a1,multiply(X0,double_divide(sP5_iProver_def,inverse(sP4_iProver_def)))) = inverse(X0),
    inference(demodulation,[status(thm)],[c_1605,c_1502]) ).

cnf(c_2446,plain,
    double_divide(double_divide(c3,b3),multiply(X0,double_divide(sP5_iProver_def,double_divide(sP2_iProver_def,double_divide(X0,X1))))) = X1,
    inference(light_normalisation,[status(thm)],[c_494,c_1465]) ).

cnf(c_2469,plain,
    multiply(multiply(X0,double_divide(sP5_iProver_def,double_divide(sP2_iProver_def,double_divide(X0,X1)))),double_divide(c3,b3)) = inverse(X1),
    inference(superposition,[status(thm)],[c_2446,c_72]) ).

cnf(c_2523,plain,
    double_divide(sP5_iProver_def,multiply(sP5_iProver_def,X0)) = inverse(X0),
    inference(superposition,[status(thm)],[c_1543,c_1469]) ).

cnf(c_2525,plain,
    double_divide(sP5_iProver_def,sP2_iProver_def) = inverse(sP2_iProver_def),
    inference(superposition,[status(thm)],[c_1094,c_1469]) ).

cnf(c_2526,plain,
    double_divide(sP5_iProver_def,sP1_iProver_def) = inverse(sP1_iProver_def),
    inference(superposition,[status(thm)],[c_1096,c_1469]) ).

cnf(c_2607,plain,
    multiply(sP2_iProver_def,sP5_iProver_def) = inverse(inverse(sP2_iProver_def)),
    inference(superposition,[status(thm)],[c_2525,c_72]) ).

cnf(c_2610,plain,
    inverse(inverse(sP2_iProver_def)) = sP2_iProver_def,
    inference(light_normalisation,[status(thm)],[c_2607,c_1094]) ).

cnf(c_2615,plain,
    multiply(sP1_iProver_def,sP5_iProver_def) = inverse(inverse(sP1_iProver_def)),
    inference(superposition,[status(thm)],[c_2526,c_72]) ).

cnf(c_2618,plain,
    inverse(inverse(sP1_iProver_def)) = sP1_iProver_def,
    inference(light_normalisation,[status(thm)],[c_2615,c_1096]) ).

cnf(c_3715,plain,
    double_divide(sP5_iProver_def,inverse(X0)) = inverse(inverse(X0)),
    inference(superposition,[status(thm)],[c_1545,c_2523]) ).

cnf(c_3716,plain,
    double_divide(sP5_iProver_def,inverse(sP4_iProver_def)) = inverse(a1),
    inference(superposition,[status(thm)],[c_1495,c_2523]) ).

cnf(c_3727,plain,
    double_divide(sP5_iProver_def,inverse(sP4_iProver_def)) = sP4_iProver_def,
    inference(light_normalisation,[status(thm)],[c_3716,c_89]) ).

cnf(c_3728,plain,
    double_divide(sP5_iProver_def,inverse(X0)) = multiply(sP5_iProver_def,X0),
    inference(light_normalisation,[status(thm)],[c_3715,c_1496]) ).

cnf(c_3732,plain,
    double_divide(a1,multiply(X0,sP4_iProver_def)) = inverse(X0),
    inference(demodulation,[status(thm)],[c_1606,c_3727]) ).

cnf(c_3750,plain,
    multiply(X0,double_divide(sP5_iProver_def,double_divide(inverse(X1),double_divide(X0,X2)))) = double_divide(a1,multiply(X1,double_divide(sP5_iProver_def,double_divide(sP4_iProver_def,X2)))),
    inference(light_normalisation,[status(thm)],[c_330,c_1465]) ).

cnf(c_3753,plain,
    multiply(X0,double_divide(sP5_iProver_def,double_divide(multiply(X1,X2),double_divide(X0,X3)))) = double_divide(a1,multiply(double_divide(X2,X1),double_divide(sP5_iProver_def,double_divide(sP4_iProver_def,X3)))),
    inference(superposition,[status(thm)],[c_72,c_3750]) ).

cnf(c_4872,plain,
    double_divide(sP5_iProver_def,multiply(X0,X1)) = multiply(sP5_iProver_def,double_divide(X1,X0)),
    inference(superposition,[status(thm)],[c_72,c_3728]) ).

cnf(c_4962,plain,
    double_divide(sP5_iProver_def,multiply(X0,X1)) = inverse(multiply(X0,X1)),
    inference(demodulation,[status(thm)],[c_4872,c_1484]) ).

cnf(c_4963,plain,
    inverse(multiply(X0,sP5_iProver_def)) = inverse(X0),
    inference(demodulation,[status(thm)],[c_1469,c_4962]) ).

cnf(c_5108,plain,
    double_divide(sP5_iProver_def,multiply(X0,double_divide(sP5_iProver_def,double_divide(multiply(inverse(X1),X1),double_divide(X0,X2))))) = X2,
    inference(light_normalisation,[status(thm)],[c_481,c_1465]) ).

cnf(c_5109,plain,
    multiply(sP5_iProver_def,X0) = X0,
    inference(demodulation,[status(thm)],[c_5108,c_72,c_1484,c_1496,c_1501,c_3732,c_3753,c_4962,c_4963]) ).

cnf(c_5116,plain,
    inverse(inverse(X0)) = X0,
    inference(demodulation,[status(thm)],[c_1496,c_5109]) ).

cnf(c_5117,plain,
    multiply(X0,sP5_iProver_def) = X0,
    inference(demodulation,[status(thm)],[c_1543,c_5109]) ).

cnf(c_5120,plain,
    a2 = sP6_iProver_def,
    inference(demodulation,[status(thm)],[c_1503,c_5109]) ).

cnf(c_5129,plain,
    sP1_iProver_def != sP3_iProver_def,
    inference(backward_subsumption_resolution,[status(thm)],[c_1505,c_5120]) ).

cnf(c_5139,plain,
    double_divide(sP5_iProver_def,X0) = inverse(X0),
    inference(superposition,[status(thm)],[c_5109,c_4962]) ).

cnf(c_5178,plain,
    inverse(multiply(X0,X1)) = double_divide(X1,X0),
    inference(superposition,[status(thm)],[c_72,c_5116]) ).

cnf(c_5221,plain,
    double_divide(b3,a3) = inverse(sP0_iProver_def),
    inference(superposition,[status(thm)],[c_85,c_5178]) ).

cnf(c_5222,plain,
    double_divide(c3,b3) = inverse(sP2_iProver_def),
    inference(superposition,[status(thm)],[c_87,c_5178]) ).

cnf(c_5223,plain,
    double_divide(c3,sP0_iProver_def) = inverse(sP1_iProver_def),
    inference(superposition,[status(thm)],[c_86,c_5178]) ).

cnf(c_6835,plain,
    double_divide(sP5_iProver_def,multiply(X0,double_divide(sP5_iProver_def,double_divide(multiply(multiply(X1,X2),double_divide(X2,X1)),double_divide(X0,X3))))) = X3,
    inference(light_normalisation,[status(thm)],[c_483,c_1465]) ).

cnf(c_6836,plain,
    double_divide(double_divide(X0,X1),X0) = X1,
    inference(demodulation,[status(thm)],[c_6835,c_72,c_209,c_5117,c_5139,c_5178]) ).

cnf(c_6842,plain,
    double_divide(sP5_iProver_def,double_divide(X0,X1)) = multiply(X1,X0),
    inference(superposition,[status(thm)],[c_1491,c_6836]) ).

cnf(c_6843,plain,
    double_divide(inverse(sP0_iProver_def),b3) = a3,
    inference(superposition,[status(thm)],[c_5221,c_6836]) ).

cnf(c_6845,plain,
    double_divide(inverse(sP1_iProver_def),c3) = sP0_iProver_def,
    inference(superposition,[status(thm)],[c_5223,c_6836]) ).

cnf(c_6862,plain,
    double_divide(X0,double_divide(X1,X0)) = X1,
    inference(superposition,[status(thm)],[c_6836,c_6836]) ).

cnf(c_6865,plain,
    multiply(X0,double_divide(X0,X1)) = inverse(X1),
    inference(superposition,[status(thm)],[c_6836,c_72]) ).

cnf(c_6888,plain,
    multiply(c3,inverse(sP2_iProver_def)) = inverse(b3),
    inference(superposition,[status(thm)],[c_5222,c_6865]) ).

cnf(c_7275,plain,
    multiply(inverse(sP1_iProver_def),sP0_iProver_def) = inverse(c3),
    inference(superposition,[status(thm)],[c_6845,c_6865]) ).

cnf(c_7547,plain,
    double_divide(double_divide(X0,X1),multiply(X2,double_divide(sP5_iProver_def,double_divide(multiply(X1,X0),sP5_iProver_def)))) = inverse(X2),
    inference(light_normalisation,[status(thm)],[c_511,c_1465]) ).

cnf(c_7548,plain,
    double_divide(double_divide(X0,X1),multiply(X2,multiply(X1,X0))) = inverse(X2),
    inference(demodulation,[status(thm)],[c_7547,c_1544,c_6842]) ).

cnf(c_7591,plain,
    double_divide(double_divide(X0,sP5_iProver_def),multiply(X1,X0)) = inverse(X1),
    inference(superposition,[status(thm)],[c_5109,c_7548]) ).

cnf(c_7605,plain,
    double_divide(double_divide(double_divide(X0,X1),X0),multiply(X2,inverse(X1))) = inverse(X2),
    inference(superposition,[status(thm)],[c_6865,c_7548]) ).

cnf(c_7618,plain,
    double_divide(inverse(X0),multiply(X1,X0)) = inverse(X1),
    inference(light_normalisation,[status(thm)],[c_7591,c_1502]) ).

cnf(c_7654,plain,
    double_divide(X0,multiply(X1,inverse(X0))) = inverse(X1),
    inference(light_normalisation,[status(thm)],[c_7605,c_6836]) ).

cnf(c_9216,plain,
    double_divide(inverse(inverse(sP2_iProver_def)),inverse(b3)) = inverse(c3),
    inference(superposition,[status(thm)],[c_6888,c_7618]) ).

cnf(c_9226,plain,
    double_divide(inverse(sP0_iProver_def),inverse(c3)) = inverse(inverse(sP1_iProver_def)),
    inference(superposition,[status(thm)],[c_7275,c_7618]) ).

cnf(c_9251,plain,
    double_divide(inverse(sP0_iProver_def),inverse(c3)) = sP1_iProver_def,
    inference(light_normalisation,[status(thm)],[c_9226,c_2618]) ).

cnf(c_9256,plain,
    double_divide(sP2_iProver_def,inverse(b3)) = inverse(c3),
    inference(light_normalisation,[status(thm)],[c_9216,c_2610]) ).

cnf(c_10946,plain,
    double_divide(inverse(X0),X1) = multiply(X0,inverse(X1)),
    inference(superposition,[status(thm)],[c_7654,c_6836]) ).

cnf(c_11201,plain,
    multiply(multiply(X0,double_divide(sP5_iProver_def,double_divide(sP2_iProver_def,double_divide(X0,X1)))),inverse(sP2_iProver_def)) = inverse(X1),
    inference(light_normalisation,[status(thm)],[c_2469,c_5222]) ).

cnf(c_11202,plain,
    double_divide(double_divide(multiply(double_divide(X0,X1),sP2_iProver_def),X0),sP2_iProver_def) = inverse(X1),
    inference(demodulation,[status(thm)],[c_11201,c_5178,c_6842,c_10946]) ).

cnf(c_11228,plain,
    double_divide(double_divide(multiply(a3,sP2_iProver_def),inverse(sP0_iProver_def)),sP2_iProver_def) = inverse(b3),
    inference(superposition,[status(thm)],[c_6843,c_11202]) ).

cnf(c_11270,plain,
    double_divide(double_divide(sP3_iProver_def,inverse(sP0_iProver_def)),sP2_iProver_def) = inverse(b3),
    inference(light_normalisation,[status(thm)],[c_11228,c_88]) ).

cnf(c_13920,plain,
    double_divide(sP2_iProver_def,inverse(b3)) = double_divide(sP3_iProver_def,inverse(sP0_iProver_def)),
    inference(superposition,[status(thm)],[c_11270,c_6862]) ).

cnf(c_13930,plain,
    double_divide(sP3_iProver_def,inverse(sP0_iProver_def)) = inverse(c3),
    inference(light_normalisation,[status(thm)],[c_13920,c_9256]) ).

cnf(c_13940,plain,
    double_divide(inverse(sP0_iProver_def),inverse(c3)) = sP3_iProver_def,
    inference(superposition,[status(thm)],[c_13930,c_6862]) ).

cnf(c_13950,plain,
    sP1_iProver_def = sP3_iProver_def,
    inference(light_normalisation,[status(thm)],[c_13940,c_9251]) ).

cnf(c_13951,plain,
    $false,
    inference(forward_subsumption_resolution,[status(thm)],[c_13950,c_5129]) ).


%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.13/0.13  % Problem  : GRP077-1 : TPTP v8.1.2. Bugfixed v2.3.0.
% 0.13/0.14  % Command  : run_iprover %s %d THM
% 0.13/0.35  % Computer : n006.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit : 300
% 0.13/0.35  % WCLimit  : 300
% 0.13/0.35  % DateTime : Thu May  2 23:50:34 EDT 2024
% 0.13/0.35  % CPUTime  : 
% 0.20/0.48  Running first-order theorem proving
% 0.20/0.48  Running: /export/starexec/sandbox2/solver/bin/run_problem --schedule fof_schedule --heuristic_context casc_unsat --no_cores 8 /export/starexec/sandbox2/benchmark/theBenchmark.p 300
% 7.66/1.68  % SZS status Started for theBenchmark.p
% 7.66/1.68  % SZS status Unsatisfiable for theBenchmark.p
% 7.66/1.68  
% 7.66/1.68  %---------------- iProver v3.9 (pre CASC 2024/SMT-COMP 2024) ----------------%
% 7.66/1.68  
% 7.66/1.68  ------  iProver source info
% 7.66/1.68  
% 7.66/1.68  git: date: 2024-05-02 19:28:25 +0000
% 7.66/1.68  git: sha1: a33b5eb135c74074ba803943bb12f2ebd971352f
% 7.66/1.68  git: non_committed_changes: false
% 7.66/1.68  
% 7.66/1.68  ------ Parsing...successful
% 7.66/1.68  
% 7.66/1.68  
% 7.66/1.68  
% 7.66/1.68  ------ Preprocessing... sup_sim: 2  sf_s  rm: 0 0s  sf_e  pe_s  pe_e 
% 7.66/1.68  
% 7.66/1.68  ------ Preprocessing... gs_s  sp: 0 0s  gs_e  snvd_s sp: 0 0s snvd_e 
% 7.66/1.68  
% 7.66/1.68  ------ Preprocessing... sf_s  rm: 0 0s  sf_e 
% 7.66/1.68  ------ Proving...
% 7.66/1.68  ------ Problem Properties 
% 7.66/1.68  
% 7.66/1.68  
% 7.66/1.68  clauses                                 12
% 7.66/1.68  conjectures                             1
% 7.66/1.68  EPR                                     1
% 7.66/1.68  Horn                                    12
% 7.66/1.68  unary                                   11
% 7.66/1.68  binary                                  0
% 7.66/1.68  lits                                    14
% 7.66/1.68  lits eq                                 14
% 7.66/1.68  fd_pure                                 0
% 7.66/1.68  fd_pseudo                               0
% 7.66/1.68  fd_cond                                 0
% 7.66/1.68  fd_pseudo_cond                          0
% 7.66/1.68  AC symbols                              0
% 7.66/1.68  
% 7.66/1.68  ------ Schedule dynamic 5 is on 
% 7.66/1.68  
% 7.66/1.68  ------ Input Options "--resolution_flag false --inst_lit_sel_side none" Time Limit: 10.
% 7.66/1.68  
% 7.66/1.68  
% 7.66/1.68  ------ 
% 7.66/1.68  Current options:
% 7.66/1.68  ------ 
% 7.66/1.68  
% 7.66/1.68  
% 7.66/1.68  
% 7.66/1.68  
% 7.66/1.68  ------ Proving...
% 7.66/1.68  
% 7.66/1.68  
% 7.66/1.68  % SZS status Unsatisfiable for theBenchmark.p
% 7.66/1.68  
% 7.66/1.68  % SZS output start CNFRefutation for theBenchmark.p
% See solution above
% 7.66/1.68  
% 7.66/1.68  
%------------------------------------------------------------------------------