TSTP Solution File: GRP076-1 by Gandalf---c-2.6

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Gandalf---c-2.6
% Problem  : GRP076-1 : TPTP v3.4.2. Bugfixed v2.3.0.
% Transfm  : add_equality:r
% Format   : otter:hypothesis:set(auto),clear(print_given)
% Command  : gandalf-wrapper -time %d %s

% Computer : art09.cs.miami.edu
% Model    : i686 unknown
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 1000MB
% OS       : Linux 2.4.22-21mdk-i686-up-4GB
% CPULimit : 600s

% Result   : Unsatisfiable 0.0s
% Output   : Assurance 0.0s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 
% Gandalf c-2.6 r1 starting to prove: /home/graph/tptp/TSTP/PreparedTPTP/otter:hypothesis:set(auto),clear(print_given)---add_equality:r/GRP/GRP076-1+eq_r.in
% Using automatic strategy selection.
% Time limit in seconds: 600
% 
% prove-all-passes started
% 
% detected problem class: peq
% 
% strategies selected: 
% (hyper 30 #f 6 5)
% (binary-unit 12 #f)
% (binary-unit-uniteq 12 #f)
% (binary-posweight-kb-big-order 60 #f 6 5)
% (binary-posweight-lex-big-order 30 #f 6 5)
% (binary 30 #t)
% (binary-posweight-kb-big-order 156 #f)
% (binary-posweight-lex-big-order 102 #f)
% (binary-posweight-firstpref-order 60 #f)
% (binary-order 30 #f)
% (binary-posweight-kb-small-order 48 #f)
% (binary-posweight-lex-small-order 30 #f)
% 
% 
% SOS clause 
% -equal(multiply(inverse(a1),a1),identity) | -equal(multiply(identity,a2),a2) | -equal(multiply(multiply(a3,b3),c3),multiply(a3,multiply(b3,c3))).
% was split for some strategies as: 
% -equal(multiply(inverse(a1),a1),identity).
% -equal(multiply(identity,a2),a2).
% -equal(multiply(multiply(a3,b3),c3),multiply(a3,multiply(b3,c3))).
% 
% ********* EMPTY CLAUSE DERIVED *********
% 
% 
% timer checkpoints: c(6,40,0,12,0,0)
% 
% 
% START OF PROOF
% 7 [] equal(X,X).
% 8 [] equal(double_divide(double_divide(X,double_divide(double_divide(double_divide(X,Y),Z),double_divide(Y,identity))),double_divide(identity,identity)),Z).
% 9 [] equal(multiply(X,Y),double_divide(double_divide(Y,X),identity)).
% 10 [] equal(inverse(X),double_divide(X,identity)).
% 11 [] equal(identity,double_divide(X,inverse(X))).
% 12 [] -equal(multiply(multiply(a3,b3),c3),multiply(a3,multiply(b3,c3))) | -equal(multiply(inverse(a1),a1),identity) | -equal(multiply(identity,a2),a2).
% 13 [para:9.1.2,10.1.2] equal(inverse(double_divide(X,Y)),multiply(Y,X)).
% 14 [para:10.1.2,9.1.2.1,demod:10] equal(multiply(identity,X),inverse(inverse(X))).
% 16 [para:9.1.2,9.1.2.1,demod:10] equal(multiply(identity,double_divide(X,Y)),inverse(multiply(Y,X))).
% 18 [para:14.1.2,14.1.2.1] equal(multiply(identity,inverse(X)),inverse(multiply(identity,X))).
% 21 [para:13.1.1,11.1.2.2] equal(identity,double_divide(double_divide(X,Y),multiply(Y,X))).
% 26 [para:10.1.2,8.1.1.1.2.1,demod:10,13] equal(double_divide(double_divide(X,double_divide(multiply(Y,X),inverse(Y))),inverse(identity)),identity).
% 27 [para:10.1.2,8.1.1.1.2.1.1,demod:10] equal(double_divide(double_divide(X,double_divide(double_divide(inverse(X),Y),inverse(identity))),inverse(identity)),Y).
% 28 [para:10.1.2,8.1.1.1.2.2,demod:10] equal(double_divide(double_divide(X,double_divide(double_divide(double_divide(X,Y),Z),inverse(Y))),inverse(identity)),Z).
% 29 [para:11.1.2,8.1.1.1.2.1,demod:13,10] equal(double_divide(double_divide(X,double_divide(identity,inverse(Y))),inverse(identity)),multiply(Y,X)).
% 30 [para:11.1.2,8.1.1.1.2.1.1,demod:14,10] equal(double_divide(double_divide(X,double_divide(double_divide(identity,Y),multiply(identity,X))),inverse(identity)),Y).
% 33 [para:21.1.2,8.1.1.1.2.1.1,demod:10] equal(double_divide(double_divide(double_divide(X,Y),double_divide(double_divide(identity,Z),inverse(multiply(Y,X)))),inverse(identity)),Z).
% 48 [para:11.1.2,29.1.1.1.2,demod:10] equal(double_divide(inverse(X),inverse(identity)),multiply(identity,X)).
% 55 [para:14.1.2,48.1.1.1] equal(double_divide(multiply(identity,X),inverse(identity)),multiply(identity,inverse(X))).
% 56 [para:13.1.1,48.1.1.1,demod:16] equal(double_divide(multiply(X,Y),inverse(identity)),inverse(multiply(X,Y))).
% 61 [para:56.1.1,26.1.1.1.2,demod:18] equal(double_divide(double_divide(X,multiply(identity,inverse(X))),inverse(identity)),identity).
% 66 [para:48.1.1,27.1.1.1.2.1,demod:61,55] equal(identity,inverse(identity)).
% 67 [para:27.1.1,27.1.1.1.2,demod:14,9,66] equal(multiply(X,Y),multiply(X,multiply(identity,Y))).
% 73 [para:66.1.2,27.1.1.1.2.2,demod:66,9] equal(multiply(multiply(X,inverse(Y)),Y),X).
% 77 [para:14.1.2,73.1.1.1.2,demod:67] equal(multiply(multiply(X,Y),inverse(Y)),X).
% 82 [?] ?
% 99 [para:29.1.1,28.1.1.1.2,demod:73,9,66,10] equal(X,double_divide(identity,inverse(X))).
% 105 [para:18.1.2,99.1.2.2,demod:99,82] equal(multiply(identity,X),X).
% 111 [para:105.1.1,16.1.1] equal(double_divide(X,Y),inverse(multiply(Y,X))).
% 114 [para:10.1.2,30.1.1.1.2.1,demod:9,105,66] equal(multiply(double_divide(identity,X),X),identity).
% 119 [para:99.1.2,30.1.1.1.2.1,demod:9,66,105] equal(multiply(double_divide(X,Y),Y),inverse(X)).
% 122 [para:114.1.1,77.1.1.1,demod:82] equal(inverse(X),double_divide(identity,X)).
% 138 [para:73.1.1,111.1.2.1] equal(double_divide(X,multiply(Y,inverse(X))),inverse(Y)).
% 142 [para:119.1.1,73.1.1.1] equal(multiply(inverse(X),Y),double_divide(X,inverse(Y))).
% 151 [para:33.1.1,28.1.1.1.2,demod:105,122,9,66] equal(multiply(X,Y),double_divide(inverse(X),inverse(Y))).
% 165 [para:138.1.1,8.1.1.1.2.1,demod:13,9,66,122,151,10] equal(multiply(multiply(X,Y),Z),multiply(X,multiply(Y,Z))).
% 185 [hyper:12,165,demod:105,11,142,cut:7,cut:7] contradiction
% END OF PROOF
% 
% Proof found by the following strategy:
% 
% using hyperresolution
% not using sos strategy
% using positive unit paramodulation strategy
% using dynamic demodulation
% using ordered paramodulation
% using kb ordering for equality
% preferring bigger arities for lex ordering
% clause length limited to 5
% clause depth limited to 6
% seconds given: 10
% 
% 
% ***GANDALF_FOUND_A_REFUTATION***
% 
% Global statistics over all passes: 
% 
%  given clauses:    88
%  derived clauses:   3343
%  kept clauses:      169
%  kept size sum:     1966
%  kept mid-nuclei:   2
%  kept new demods:   173
%  forw unit-subs:    3161
%  forw double-subs: 0
%  forw overdouble-subs: 0
%  backward subs:     4
%  fast unit cutoff:  3
%  full unit cutoff:  0
%  dbl  unit cutoff:  0
%  real runtime  :  0.5
%  process. runtime:  0.4
% specific non-discr-tree subsumption statistics: 
%  tried:           0
%  length fails:    0
%  strength fails:  0
%  predlist fails:  0
%  aux str. fails:  0
%  by-lit fails:    0
%  full subs tried: 0
%  full subs fail:  0
% 
% ; program args: ("/home/graph/tptp/Systems/Gandalf---c-2.6/gandalf" "-time" "600" "/home/graph/tptp/TSTP/PreparedTPTP/otter:hypothesis:set(auto),clear(print_given)---add_equality:r/GRP/GRP076-1+eq_r.in")
% 
%------------------------------------------------------------------------------