TSTP Solution File: GRP039-7 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : GRP039-7 : TPTP v8.1.0. Bugfixed v1.0.1.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n018.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:55:56 EDT 2022

% Result   : Timeout 285.52s 285.75s
% Output   : None 
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   10
%            Number of leaves      :   15
% Syntax   : Number of clauses     :   38 (  24 unt;   9 nHn;  24 RR)
%            Number of literals    :   61 (  22 equ;  11 neg)
%            Maximal clause size   :    4 (   1 avg)
%            Maximal term depth    :    4 (   2 avg)
%            Number of predicates  :    3 (   1 usr;   1 prp; 0-2 aty)
%            Number of functors    :    8 (   8 usr;   5 con; 0-2 aty)
%            Number of variables   :   27 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    ( ~ subgroup_member(A)
    | subgroup_member(inverse(A)) ),
    file('GRP039-7.p',unknown),
    [] ).

cnf(2,axiom,
    ( ~ subgroup_member(A)
    | ~ subgroup_member(B)
    | multiply(A,B) != C
    | subgroup_member(C) ),
    file('GRP039-7.p',unknown),
    [] ).

cnf(3,axiom,
    ~ subgroup_member(d),
    file('GRP039-7.p',unknown),
    [] ).

cnf(5,axiom,
    A = A,
    file('GRP039-7.p',unknown),
    [] ).

cnf(7,axiom,
    multiply(identity,A) = A,
    file('GRP039-7.p',unknown),
    [] ).

cnf(8,axiom,
    multiply(inverse(A),A) = identity,
    file('GRP039-7.p',unknown),
    [] ).

cnf(10,axiom,
    multiply(multiply(A,B),C) = multiply(A,multiply(B,C)),
    file('GRP039-7.p',unknown),
    [] ).

cnf(13,axiom,
    multiply(A,identity) = A,
    file('GRP039-7.p',unknown),
    [] ).

cnf(14,axiom,
    multiply(A,inverse(A)) = identity,
    file('GRP039-7.p',unknown),
    [] ).

cnf(17,axiom,
    inverse(inverse(A)) = A,
    file('GRP039-7.p',unknown),
    [] ).

cnf(21,axiom,
    ( subgroup_member(A)
    | subgroup_member(B)
    | subgroup_member(element_in_O2(A,B)) ),
    file('GRP039-7.p',unknown),
    [] ).

cnf(22,axiom,
    ( subgroup_member(A)
    | subgroup_member(B)
    | multiply(A,element_in_O2(A,B)) = B ),
    file('GRP039-7.p',unknown),
    [] ).

cnf(23,axiom,
    subgroup_member(b),
    file('GRP039-7.p',unknown),
    [] ).

cnf(24,axiom,
    multiply(b,inverse(a)) = c,
    file('GRP039-7.p',unknown),
    [] ).

cnf(27,axiom,
    multiply(a,c) = d,
    file('GRP039-7.p',unknown),
    [] ).

cnf(31,plain,
    subgroup_member(inverse(b)),
    inference(hyper,[status(thm)],[23,1]),
    [iquote('hyper,23,1')] ).

cnf(39,plain,
    ( ~ subgroup_member(inverse(A))
    | subgroup_member(A) ),
    inference(para_from,[status(thm),theory(equality)],[17,1]),
    [iquote('para_from,16.1.1,1.2.1')] ).

cnf(40,plain,
    ( ~ subgroup_member(a)
    | ~ subgroup_member(c)
    | d != A
    | subgroup_member(A) ),
    inference(para_from,[status(thm),theory(equality)],[27,2]),
    [iquote('para_from,26.1.1,2.3.1')] ).

cnf(49,plain,
    multiply(A,multiply(inverse(A),B)) = B,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[10,14]),7])]),
    [iquote('para_into,10.1.1.1,14.1.1,demod,7,flip.1')] ).

cnf(51,plain,
    multiply(inverse(A),multiply(A,B)) = B,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[10,8]),7])]),
    [iquote('para_into,10.1.1.1,8.1.1,demod,7,flip.1')] ).

cnf(57,plain,
    multiply(b,multiply(inverse(a),A)) = multiply(c,A),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[24,10])]),
    [iquote('para_from,24.1.1,10.1.1.1,flip.1')] ).

cnf(142,plain,
    ( subgroup_member(A)
    | subgroup_member(element_in_O2(inverse(a),A))
    | subgroup_member(c) ),
    inference(hyper,[status(thm)],[21,2,23,24]),
    [iquote('hyper,21,2,23,24')] ).

cnf(251,plain,
    ( subgroup_member(c)
    | subgroup_member(element_in_O2(inverse(a),c)) ),
    inference(factor,[status(thm)],[142]),
    [iquote('factor,142.1.3')] ).

cnf(589,plain,
    ( subgroup_member(A)
    | multiply(inverse(a),element_in_O2(inverse(a),A)) = A
    | subgroup_member(c) ),
    inference(hyper,[status(thm)],[22,2,23,24]),
    [iquote('hyper,22,2,23,24')] ).

cnf(726,plain,
    ( subgroup_member(c)
    | multiply(inverse(a),element_in_O2(inverse(a),c)) = c ),
    inference(factor,[status(thm)],[589]),
    [iquote('factor,589.1.3')] ).

cnf(1749,plain,
    ( subgroup_member(element_in_O2(inverse(a),c))
    | subgroup_member(inverse(c)) ),
    inference(hyper,[status(thm)],[251,1]),
    [iquote('hyper,251,1')] ).

cnf(1886,plain,
    multiply(inverse(b),c) = inverse(a),
    inference(para_into,[status(thm),theory(equality)],[51,24]),
    [iquote('para_into,51.1.1.2,24.1.1')] ).

cnf(1933,plain,
    multiply(c,a) = b,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[57,14]),13,17])]),
    [iquote('para_into,57.1.1.2,14.1.1,demod,13,17,flip.1')] ).

cnf(1937,plain,
    multiply(inverse(c),b) = a,
    inference(para_from,[status(thm),theory(equality)],[1933,51]),
    [iquote('para_from,1933.1.1,51.1.1.2')] ).

cnf(2082,plain,
    ( ~ subgroup_member(c)
    | inverse(a) != A
    | subgroup_member(A) ),
    inference(unit_del,[status(thm)],[inference(para_from,[status(thm),theory(equality)],[1886,2]),31]),
    [iquote('para_from,1886.1.1,2.3.1,unit_del,31')] ).

cnf(2153,plain,
    ( subgroup_member(element_in_O2(inverse(a),c))
    | subgroup_member(a) ),
    inference(hyper,[status(thm)],[1749,2,23,1937]),
    [iquote('hyper,1749,2,23,1937')] ).

cnf(2155,plain,
    subgroup_member(element_in_O2(inverse(a),c)),
    inference(factor_simp,[status(thm)],[inference(unit_del,[status(thm)],[inference(hyper,[status(thm)],[2153,40,251,5]),3])]),
    [iquote('hyper,2153,40,251,5,unit_del,3,factor_simp')] ).

cnf(2455,plain,
    ( element_in_O2(inverse(a),c) = d
    | subgroup_member(c) ),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[726,49]),27])]),
    [iquote('para_from,726.2.1,49.1.1.2,demod,27,flip.1')] ).

cnf(2457,plain,
    subgroup_member(c),
    inference(unit_del,[status(thm)],[inference(para_from,[status(thm),theory(equality)],[2455,2155]),3]),
    [iquote('para_from,2455.1.1,2155.1.1,unit_del,3')] ).

cnf(2459,plain,
    subgroup_member(inverse(a)),
    inference(hyper,[status(thm)],[2457,2082,5]),
    [iquote('hyper,2457,2082,5')] ).

cnf(2650,plain,
    subgroup_member(a),
    inference(hyper,[status(thm)],[2459,39]),
    [iquote('hyper,2459,39')] ).

cnf(2715,plain,
    subgroup_member(d),
    inference(hyper,[status(thm)],[2650,40,2457,5]),
    [iquote('hyper,2650,40,2457,5')] ).

cnf(2716,plain,
    $false,
    inference(binary,[status(thm)],[2715,3]),
    [iquote('binary,2715.1,3.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : GRP039-7 : TPTP v8.1.0. Bugfixed v1.0.1.
% 0.03/0.13  % Command  : otter-tptp-script %s
% 0.14/0.34  % Computer : n018.cluster.edu
% 0.14/0.34  % Model    : x86_64 x86_64
% 0.14/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.34  % Memory   : 8042.1875MB
% 0.14/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.34  % CPULimit : 300
% 0.14/0.34  % WCLimit  : 300
% 0.14/0.34  % DateTime : Wed Jul 27 05:07:16 EDT 2022
% 0.14/0.34  % CPUTime  : 
% 1.75/1.91  ----- Otter 3.3f, August 2004 -----
% 1.75/1.91  The process was started by sandbox2 on n018.cluster.edu,
% 1.75/1.91  Wed Jul 27 05:07:16 2022
% 1.75/1.91  The command was "./otter".  The process ID is 24191.
% 1.75/1.91  
% 1.75/1.91  set(prolog_style_variables).
% 1.75/1.91  set(auto).
% 1.75/1.91     dependent: set(auto1).
% 1.75/1.91     dependent: set(process_input).
% 1.75/1.91     dependent: clear(print_kept).
% 1.75/1.91     dependent: clear(print_new_demod).
% 1.75/1.91     dependent: clear(print_back_demod).
% 1.75/1.91     dependent: clear(print_back_sub).
% 1.75/1.91     dependent: set(control_memory).
% 1.75/1.91     dependent: assign(max_mem, 12000).
% 1.75/1.91     dependent: assign(pick_given_ratio, 4).
% 1.75/1.91     dependent: assign(stats_level, 1).
% 1.75/1.91     dependent: assign(max_seconds, 10800).
% 1.75/1.91  clear(print_given).
% 1.75/1.91  
% 1.75/1.91  list(usable).
% 1.75/1.91  0 [] A=A.
% 1.75/1.91  0 [] multiply(identity,X)=X.
% 1.75/1.91  0 [] multiply(inverse(X),X)=identity.
% 1.75/1.91  0 [] multiply(multiply(X,Y),Z)=multiply(X,multiply(Y,Z)).
% 1.75/1.91  0 [] -subgroup_member(X)|subgroup_member(inverse(X)).
% 1.75/1.91  0 [] -subgroup_member(X)| -subgroup_member(Y)|multiply(X,Y)!=Z|subgroup_member(Z).
% 1.75/1.91  0 [] multiply(X,identity)=X.
% 1.75/1.91  0 [] multiply(X,inverse(X))=identity.
% 1.75/1.91  0 [] inverse(inverse(X))=X.
% 1.75/1.91  0 [] inverse(identity)=identity.
% 1.75/1.91  0 [] subgroup_member(identity).
% 1.75/1.91  0 [] subgroup_member(X)|subgroup_member(Y)|subgroup_member(element_in_O2(X,Y)).
% 1.75/1.91  0 [] subgroup_member(X)|subgroup_member(Y)|multiply(X,element_in_O2(X,Y))=Y.
% 1.75/1.91  0 [] subgroup_member(b).
% 1.75/1.91  0 [] multiply(b,inverse(a))=c.
% 1.75/1.91  0 [] multiply(a,c)=d.
% 1.75/1.91  0 [] -subgroup_member(d).
% 1.75/1.91  end_of_list.
% 1.75/1.91  
% 1.75/1.91  SCAN INPUT: prop=0, horn=0, equality=1, symmetry=0, max_lits=4.
% 1.75/1.91  
% 1.75/1.91  This ia a non-Horn set with equality.  The strategy will be
% 1.75/1.91  Knuth-Bendix, ordered hyper_res, factoring, and unit
% 1.75/1.91  deletion, with positive clauses in sos and nonpositive
% 1.75/1.91  clauses in usable.
% 1.75/1.91  
% 1.75/1.91     dependent: set(knuth_bendix).
% 1.75/1.91     dependent: set(anl_eq).
% 1.75/1.91     dependent: set(para_from).
% 1.75/1.91     dependent: set(para_into).
% 1.75/1.91     dependent: clear(para_from_right).
% 1.75/1.91     dependent: clear(para_into_right).
% 1.75/1.91     dependent: set(para_from_vars).
% 1.75/1.91     dependent: set(eq_units_both_ways).
% 1.75/1.91     dependent: set(dynamic_demod_all).
% 1.75/1.91     dependent: set(dynamic_demod).
% 1.75/1.91     dependent: set(order_eq).
% 1.75/1.91     dependent: set(back_demod).
% 1.75/1.91     dependent: set(lrpo).
% 1.75/1.91     dependent: set(hyper_res).
% 1.75/1.91     dependent: set(unit_deletion).
% 1.75/1.91     dependent: set(factor).
% 1.75/1.91  
% 1.75/1.91  ------------> process usable:
% 1.75/1.91  ** KEPT (pick-wt=5): 1 [] -subgroup_member(A)|subgroup_member(inverse(A)).
% 1.75/1.91  ** KEPT (pick-wt=11): 2 [] -subgroup_member(A)| -subgroup_member(B)|multiply(A,B)!=C|subgroup_member(C).
% 1.75/1.91  ** KEPT (pick-wt=2): 3 [] -subgroup_member(d).
% 1.75/1.91  
% 1.75/1.91  ------------> process sos:
% 1.75/1.91  ** KEPT (pick-wt=3): 5 [] A=A.
% 1.75/1.91  ** KEPT (pick-wt=5): 6 [] multiply(identity,A)=A.
% 1.75/1.91  ---> New Demodulator: 7 [new_demod,6] multiply(identity,A)=A.
% 1.75/1.91  ** KEPT (pick-wt=6): 8 [] multiply(inverse(A),A)=identity.
% 1.75/1.91  ---> New Demodulator: 9 [new_demod,8] multiply(inverse(A),A)=identity.
% 1.75/1.91  ** KEPT (pick-wt=11): 10 [] multiply(multiply(A,B),C)=multiply(A,multiply(B,C)).
% 1.75/1.91  ---> New Demodulator: 11 [new_demod,10] multiply(multiply(A,B),C)=multiply(A,multiply(B,C)).
% 1.75/1.91  ** KEPT (pick-wt=5): 12 [] multiply(A,identity)=A.
% 1.75/1.91  ---> New Demodulator: 13 [new_demod,12] multiply(A,identity)=A.
% 1.75/1.91  ** KEPT (pick-wt=6): 14 [] multiply(A,inverse(A))=identity.
% 1.75/1.91  ---> New Demodulator: 15 [new_demod,14] multiply(A,inverse(A))=identity.
% 1.75/1.91  ** KEPT (pick-wt=5): 16 [] inverse(inverse(A))=A.
% 1.75/1.91  ---> New Demodulator: 17 [new_demod,16] inverse(inverse(A))=A.
% 1.75/1.91  ** KEPT (pick-wt=4): 18 [] inverse(identity)=identity.
% 1.75/1.91  ---> New Demodulator: 19 [new_demod,18] inverse(identity)=identity.
% 1.75/1.91  ** KEPT (pick-wt=2): 20 [] subgroup_member(identity).
% 1.75/1.91  ** KEPT (pick-wt=8): 21 [] subgroup_member(A)|subgroup_member(B)|subgroup_member(element_in_O2(A,B)).
% 1.75/1.91  ** KEPT (pick-wt=11): 22 [] subgroup_member(A)|subgroup_member(B)|multiply(A,element_in_O2(A,B))=B.
% 1.75/1.91  ** KEPT (pick-wt=2): 23 [] subgroup_member(b).
% 1.75/1.91  ** KEPT (pick-wt=6): 24 [] multiply(b,inverse(a))=c.
% 1.75/1.91  ---> New Demodulator: 25 [new_demod,24] multiply(b,inverse(a))=c.
% 1.75/1.91  ** KEPT (pick-wt=5): 26 [] multiply(a,c)=d.
% 1.75/1.91  ---> New Demodulator: 27 [new_demod,26] multiply(a,c)=d.
% 1.75/1.91    Following clause subsumed by 5 during input processing: 0 [copy,5,flip.1] A=A.
% 1.75/1.91  >>>> Starting back demodulation with 7.
% 1.75/1.91  >>>> Starting back demodulation with 9.
% 1.75/1.91  >>>> Starting back demodulation with 11.
% 1.75/1.91  >>>> Starting back demodulation with 13.
% 285.52/285.75  >>>> Starting back demodulation with 15.
% 285.52/285.75  >>>> Starting back demodulation with 17.
% 285.52/285.75  >>>> Starting back demodulation with 19.
% 285.52/285.75  >>>> Starting back demodulation with 25.
% 285.52/285.75  >>>> Starting back demodulation with 27.
% 285.52/285.75  
% 285.52/285.75  ======= end of input processing =======
% 285.52/285.75  
% 285.52/285.75  =========== start of search ===========
% 285.52/285.75  
% 285.52/285.75  
% 285.52/285.75  Resetting weight limit to 9.
% 285.52/285.75  
% 285.52/285.75  
% 285.52/285.75  Resetting weight limit to 9.
% 285.52/285.75  
% 285.52/285.75  sos_size=1587
% 285.52/285.75  
% 285.52/285.75  
% 285.52/285.75  Resetting weight limit to 8.
% 285.52/285.75  
% 285.52/285.75  
% 285.52/285.75  Resetting weight limit to 8.
% 285.52/285.75  
% 285.52/285.75  sos_size=1724
% 285.52/285.75  
% 285.52/285.75  -- HEY sandbox2, WE HAVE A PROOF!! -- 
% 285.52/285.75  
% 285.52/285.75  ----> UNIT CONFLICT at 283.81 sec ----> 2716 [binary,2715.1,3.1] $F.
% 285.52/285.75  
% 285.52/285.75  Length of proof is 22.  Level of proof is 9.
% 285.52/285.75  
% 285.52/285.75  ---------------- PROOF ----------------
% 285.52/285.75  % SZS status Unsatisfiable
% 285.52/285.75  % SZS output start Refutation
% See solution above
% 285.52/285.75  ------------ end of proof -------------
% 285.52/285.75  
% 285.52/285.75  
% 285.52/285.75  Search stopped by max_proofs option.
% 285.52/285.75  
% 285.52/285.75  
% 285.52/285.75  Search stopped by max_proofs option.
% 285.52/285.75  
% 285.52/285.75  ============ end of search ============
% 285.52/285.75  
% 285.52/285.75  -------------- statistics -------------
% 285.52/285.75  clauses given                829
% 285.52/285.75  clauses generated        9723025
% 285.52/285.75  clauses kept                2683
% 285.52/285.75  clauses forward subsumed   38318
% 285.52/285.75  clauses back subsumed        269
% 285.52/285.75  Kbytes malloced             6835
% 285.52/285.75  
% 285.52/285.75  ----------- times (seconds) -----------
% 285.52/285.75  user CPU time        283.81          (0 hr, 4 min, 43 sec)
% 285.52/285.75  system CPU time        0.02          (0 hr, 0 min, 0 sec)
% 285.52/285.75  wall-clock time      285             (0 hr, 4 min, 45 sec)
% 285.52/285.75  
% 285.52/285.75  That finishes the proof of the theorem.
% 285.52/285.75  
% 285.52/285.75  Process 24191 finished Wed Jul 27 05:12:01 2022
% 285.52/285.75  Otter interrupted
% 285.60/285.75  PROOF FOUND
%------------------------------------------------------------------------------