TSTP Solution File: GRP028-1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : GRP028-1 : TPTP v8.1.2. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n012.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 01:16:39 EDT 2023

% Result   : Unsatisfiable 0.21s 0.40s
% Output   : Proof 0.21s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.13  % Problem  : GRP028-1 : TPTP v8.1.2. Released v1.0.0.
% 0.00/0.14  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.35  % Computer : n012.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit : 300
% 0.13/0.35  % WCLimit  : 300
% 0.13/0.35  % DateTime : Tue Aug 29 02:09:09 EDT 2023
% 0.13/0.35  % CPUTime  : 
% 0.21/0.40  Command-line arguments: --lhs-weight 1 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 0.21/0.40  
% 0.21/0.40  % SZS status Unsatisfiable
% 0.21/0.40  
% 0.21/0.40  % SZS output start Proof
% 0.21/0.40  Take the following subset of the input axioms:
% 0.21/0.40    fof(associativity, axiom, ![X, Y, U, Z, V, W]: (~product(X, Y, U) | (~product(Y, Z, V) | (~product(X, V, W) | product(U, Z, W))))).
% 0.21/0.40    fof(left_soln, hypothesis, ![X2, Y2]: product(left_solution(X2, Y2), X2, Y2)).
% 0.21/0.40    fof(prove_there_is_a_right_identity, negated_conjecture, ![X2]: ~product(not_identity(X2), X2, not_identity(X2))).
% 0.21/0.40    fof(right_soln, hypothesis, ![X2, Y2]: product(X2, right_solution(X2, Y2), Y2)).
% 0.21/0.40  
% 0.21/0.40  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.21/0.40  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.21/0.40  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.21/0.40    fresh(y, y, x1...xn) = u
% 0.21/0.40    C => fresh(s, t, x1...xn) = v
% 0.21/0.40  where fresh is a fresh function symbol and x1..xn are the free
% 0.21/0.40  variables of u and v.
% 0.21/0.40  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.21/0.40  input problem has no model of domain size 1).
% 0.21/0.40  
% 0.21/0.40  The encoding turns the above axioms into the following unit equations and goals:
% 0.21/0.40  
% 0.21/0.40  Axiom 1 (right_soln): product(X, right_solution(X, Y), Y) = true2.
% 0.21/0.40  Axiom 2 (left_soln): product(left_solution(X, Y), X, Y) = true2.
% 0.21/0.40  Axiom 3 (associativity): fresh3(X, X, Y, Z, W) = true2.
% 0.21/0.40  Axiom 4 (associativity): fresh(X, X, Y, Z, W, V, U) = product(W, V, U).
% 0.21/0.40  Axiom 5 (associativity): fresh2(X, X, Y, Z, W, V, U, T) = fresh3(product(Y, Z, W), true2, W, V, T).
% 0.21/0.40  Axiom 6 (associativity): fresh2(product(X, Y, Z), true2, W, X, V, Y, Z, U) = fresh(product(W, Z, U), true2, W, X, V, Y, U).
% 0.21/0.40  
% 0.21/0.40  Goal 1 (prove_there_is_a_right_identity): product(not_identity(X), X, not_identity(X)) = true2.
% 0.21/0.40  The goal is true when:
% 0.21/0.40    X = right_solution(X, X)
% 0.21/0.40  
% 0.21/0.40  Proof:
% 0.21/0.40    product(not_identity(right_solution(X, X)), right_solution(X, X), not_identity(right_solution(X, X)))
% 0.21/0.40  = { by axiom 4 (associativity) R->L }
% 0.21/0.40    fresh(true2, true2, left_solution(X, not_identity(right_solution(X, X))), X, not_identity(right_solution(X, X)), right_solution(X, X), not_identity(right_solution(X, X)))
% 0.21/0.40  = { by axiom 2 (left_soln) R->L }
% 0.21/0.40    fresh(product(left_solution(X, not_identity(right_solution(X, X))), X, not_identity(right_solution(X, X))), true2, left_solution(X, not_identity(right_solution(X, X))), X, not_identity(right_solution(X, X)), right_solution(X, X), not_identity(right_solution(X, X)))
% 0.21/0.40  = { by axiom 6 (associativity) R->L }
% 0.21/0.40    fresh2(product(X, right_solution(X, X), X), true2, left_solution(X, not_identity(right_solution(X, X))), X, not_identity(right_solution(X, X)), right_solution(X, X), X, not_identity(right_solution(X, X)))
% 0.21/0.40  = { by axiom 1 (right_soln) }
% 0.21/0.40    fresh2(true2, true2, left_solution(X, not_identity(right_solution(X, X))), X, not_identity(right_solution(X, X)), right_solution(X, X), X, not_identity(right_solution(X, X)))
% 0.21/0.40  = { by axiom 5 (associativity) }
% 0.21/0.40    fresh3(product(left_solution(X, not_identity(right_solution(X, X))), X, not_identity(right_solution(X, X))), true2, not_identity(right_solution(X, X)), right_solution(X, X), not_identity(right_solution(X, X)))
% 0.21/0.40  = { by axiom 2 (left_soln) }
% 0.21/0.40    fresh3(true2, true2, not_identity(right_solution(X, X)), right_solution(X, X), not_identity(right_solution(X, X)))
% 0.21/0.40  = { by axiom 3 (associativity) }
% 0.21/0.40    true2
% 0.21/0.40  % SZS output end Proof
% 0.21/0.40  
% 0.21/0.40  RESULT: Unsatisfiable (the axioms are contradictory).
%------------------------------------------------------------------------------