TSTP Solution File: GRP005-1 by Moca---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Moca---0.1
% Problem  : GRP005-1 : TPTP v8.1.0. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : moca.sh %s

% Computer : n012.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sat Jul 16 10:51:44 EDT 2022

% Result   : Unsatisfiable 1.10s 1.26s
% Output   : Proof 1.10s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : GRP005-1 : TPTP v8.1.0. Released v1.0.0.
% 0.03/0.13  % Command  : moca.sh %s
% 0.12/0.34  % Computer : n012.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 600
% 0.12/0.34  % DateTime : Mon Jun 13 11:44:40 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 1.10/1.26  % SZS status Unsatisfiable
% 1.10/1.26  % SZS output start Proof
% 1.10/1.26  The input problem is unsatisfiable because
% 1.10/1.26  
% 1.10/1.26  [1] the following set of Horn clauses is unsatisfiable:
% 1.10/1.26  
% 1.10/1.26  	product(identity, X, X)
% 1.10/1.26  	product(X, identity, X)
% 1.10/1.26  	product(X, inverse(X), identity)
% 1.10/1.26  	product(inverse(X), X, identity)
% 1.10/1.26  	an_element(a)
% 1.10/1.26  	an_element(X) & an_element(Y) & product(X, inverse(Y), Z) ==> an_element(Z)
% 1.10/1.26  	product(X, Y, U) & product(Y, Z, V) & product(U, Z, W) ==> product(X, V, W)
% 1.10/1.26  	product(X, Y, U) & product(Y, Z, V) & product(X, V, W) ==> product(U, Z, W)
% 1.10/1.26  	an_element(identity) ==> \bottom
% 1.10/1.26  
% 1.10/1.26  This holds because
% 1.10/1.26  
% 1.10/1.26  [2] the following E entails the following G (Claessen-Smallbone's transformation (2018)):
% 1.10/1.26  
% 1.10/1.26  E:
% 1.10/1.26  	an_element(a) = true__
% 1.10/1.26  	f1(true__, Z) = an_element(Z)
% 1.10/1.26  	f10(an_element(identity)) = true__
% 1.10/1.26  	f10(true__) = false__
% 1.10/1.26  	f2(true__, X, Z) = f1(an_element(X), Z)
% 1.10/1.26  	f3(product(X, inverse(Y), Z), Y, X, Z) = true__
% 1.10/1.26  	f3(true__, Y, X, Z) = f2(an_element(Y), X, Z)
% 1.10/1.26  	f4(true__, X, V, W) = product(X, V, W)
% 1.10/1.26  	f5(true__, X, Y, U, V, W) = f4(product(X, Y, U), X, V, W)
% 1.10/1.26  	f6(product(U, Z, W), Y, Z, V, X, U, W) = true__
% 1.10/1.26  	f6(true__, Y, Z, V, X, U, W) = f5(product(Y, Z, V), X, Y, U, V, W)
% 1.10/1.26  	f7(true__, U, Z, W) = product(U, Z, W)
% 1.10/1.26  	f8(true__, X, Y, U, Z, W) = f7(product(X, Y, U), U, Z, W)
% 1.10/1.26  	f9(product(X, V, W), Y, Z, V, X, U, W) = true__
% 1.10/1.26  	f9(true__, Y, Z, V, X, U, W) = f8(product(Y, Z, V), X, Y, U, Z, W)
% 1.10/1.26  	product(X, identity, X) = true__
% 1.10/1.26  	product(X, inverse(X), identity) = true__
% 1.10/1.26  	product(identity, X, X) = true__
% 1.10/1.26  	product(inverse(X), X, identity) = true__
% 1.10/1.26  G:
% 1.10/1.26  	true__ = false__
% 1.10/1.26  
% 1.10/1.26  This holds because
% 1.10/1.26  
% 1.10/1.26  [3] E entails the following ordered TRS and the lhs and rhs of G join by the TRS:
% 1.10/1.26  
% 1.10/1.26  
% 1.10/1.26  	an_element(Z) -> f1(true__, Z)
% 1.10/1.26  	an_element(a) -> true__
% 1.10/1.26  	f1(f1(true__, identity), inverse(a)) -> true__
% 1.10/1.26  	f1(f1(true__, inverse(inverse(a))), identity) -> true__
% 1.10/1.26  	f1(f1(true__, inverse(inverse(identity))), identity) -> true__
% 1.10/1.26  	f1(true__, a) -> true__
% 1.10/1.26  	f1(true__, identity) -> true__
% 1.10/1.26  	f1(true__, inverse(a)) -> true__
% 1.10/1.26  	f1(true__, inverse(identity)) -> true__
% 1.10/1.26  	f10(an_element(identity)) -> true__
% 1.10/1.26  	f10(f1(true__, identity)) -> true__
% 1.10/1.26  	f10(true__) -> false__
% 1.10/1.26  	f2(f1(true__, Y1), Y1, identity) -> true__
% 1.10/1.26  	f2(f1(true__, Y1), identity, inverse(Y1)) -> true__
% 1.10/1.26  	f2(f1(true__, Y1), inverse(inverse(Y1)), identity) -> true__
% 1.10/1.26  	f2(true__, X, Z) -> f1(an_element(X), Z)
% 1.10/1.26  	f3(product(X, inverse(Y), Z), Y, X, Z) -> true__
% 1.10/1.26  	f3(true__, Y, X, Z) -> f2(an_element(Y), X, Z)
% 1.10/1.26  	f4(f7(true__, Y3, Y2, identity), Y3, Y2, identity) -> true__
% 1.10/1.26  	f4(f7(true__, Y3, identity, identity), Y3, Y2, Y2) -> true__
% 1.10/1.26  	f4(true__, X, V, W) -> product(X, V, W)
% 1.10/1.26  	f5(f7(true__, Y3, Y1, Y4), Y5, Y3, inverse(Y1), Y4, identity) -> true__
% 1.10/1.26  	f5(f7(true__, Y3, Y2, Y4), Y5, Y3, identity, Y4, Y2) -> true__
% 1.10/1.26  	f5(f7(true__, Y3, identity, Y4), Y5, Y3, Y2, Y4, Y2) -> true__
% 1.10/1.26  	f5(f7(true__, Y3, inverse(Y0), Y4), Y5, Y3, Y0, Y4, identity) -> true__
% 1.10/1.26  	f5(true__, X, Y, U, V, W) -> f4(product(X, Y, U), X, V, W)
% 1.10/1.26  	f6(product(U, Z, W), Y, Z, V, X, U, W) -> true__
% 1.10/1.26  	f6(true__, Y, Z, V, X, U, W) -> f5(product(Y, Z, V), X, Y, U, V, W)
% 1.10/1.26  	f7(f7(true__, identity, identity, Y3), Y3, Y2, Y2) -> true__
% 1.10/1.26  	f7(true__, Y0, inverse(Y0), identity) -> true__
% 1.10/1.26  	f7(true__, Y2, identity, Y2) -> true__
% 1.10/1.26  	f7(true__, identity, Y2, Y2) -> true__
% 1.10/1.26  	f7(true__, inverse(Y1), Y1, identity) -> true__
% 1.10/1.26  	f7(true__, inverse(identity), Y1, Y1) -> true__
% 1.10/1.26  	f8(f7(true__, Y3, Y4, Y1), inverse(Y1), Y3, Y5, Y4, identity) -> true__
% 1.10/1.26  	f8(f7(true__, Y3, Y4, Y2), identity, Y3, Y5, Y4, Y2) -> true__
% 1.10/1.26  	f8(f7(true__, Y3, Y4, identity), Y2, Y3, Y5, Y4, Y2) -> true__
% 1.10/1.26  	f8(f7(true__, Y3, Y4, inverse(Y0)), Y0, Y3, Y5, Y4, identity) -> true__
% 1.10/1.26  	f8(true__, X, Y, U, Z, W) -> f7(product(X, Y, U), U, Z, W)
% 1.10/1.26  	f9(product(X, V, W), Y, Z, V, X, U, W) -> true__
% 1.10/1.26  	f9(true__, Y, Z, V, X, U, W) -> f8(product(Y, Z, V), X, Y, U, Z, W)
% 1.10/1.26  	false__ -> true__
% 1.10/1.26  	product(U, Z, W) -> f7(true__, U, Z, W)
% 1.10/1.26  	product(X, identity, X) -> true__
% 1.10/1.26  	product(X, inverse(X), identity) -> true__
% 1.10/1.26  	product(identity, X, X) -> true__
% 1.10/1.26  	product(inverse(X), X, identity) -> true__
% 1.10/1.26  with the LPO induced by
% 1.10/1.26  	f10 > f6 > f5 > f4 > f9 > f8 > product > f7 > f3 > f2 > an_element > f1 > a > inverse > identity > false__ > true__
% 1.10/1.26  
% 1.10/1.26  % SZS output end Proof
% 1.10/1.26  
%------------------------------------------------------------------------------