TSTP Solution File: GRP001-1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : GRP001-1 : TPTP v8.1.2. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n014.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 01:16:28 EDT 2023

% Result   : Unsatisfiable 0.20s 0.42s
% Output   : Proof 0.20s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.13  % Problem  : GRP001-1 : TPTP v8.1.2. Released v1.0.0.
% 0.00/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n014.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Tue Aug 29 00:41:00 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 0.20/0.42  Command-line arguments: --set-join --lhs-weight 1 --no-flatten-goal --complete-subsets --goal-heuristic
% 0.20/0.42  
% 0.20/0.42  % SZS status Unsatisfiable
% 0.20/0.42  
% 0.20/0.43  % SZS output start Proof
% 0.20/0.43  Take the following subset of the input axioms:
% 0.20/0.43    fof(a_times_b_is_c, negated_conjecture, product(a, b, c)).
% 0.20/0.43    fof(associativity1, axiom, ![X, Y, Z, W, U, V]: (~product(X, Y, U) | (~product(Y, Z, V) | (~product(U, Z, W) | product(X, V, W))))).
% 0.20/0.43    fof(associativity2, axiom, ![X2, Y2, Z2, W2, U2, V2]: (~product(X2, Y2, U2) | (~product(Y2, Z2, V2) | (~product(X2, V2, W2) | product(U2, Z2, W2))))).
% 0.20/0.43    fof(left_identity, axiom, ![X2]: product(identity, X2, X2)).
% 0.20/0.43    fof(prove_b_times_a_is_c, negated_conjecture, ~product(b, a, c)).
% 0.20/0.43    fof(right_identity, axiom, ![X2]: product(X2, identity, X2)).
% 0.20/0.43    fof(square_element, hypothesis, ![X2]: product(X2, X2, identity)).
% 0.20/0.43    fof(total_function1, axiom, ![X2, Y2]: product(X2, Y2, multiply(X2, Y2))).
% 0.20/0.43    fof(total_function2, axiom, ![X2, Y2, Z2, W2]: (~product(X2, Y2, Z2) | (~product(X2, Y2, W2) | Z2=W2))).
% 0.20/0.43  
% 0.20/0.43  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.20/0.43  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.20/0.43  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.20/0.43    fresh(y, y, x1...xn) = u
% 0.20/0.43    C => fresh(s, t, x1...xn) = v
% 0.20/0.43  where fresh is a fresh function symbol and x1..xn are the free
% 0.20/0.43  variables of u and v.
% 0.20/0.43  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.20/0.43  input problem has no model of domain size 1).
% 0.20/0.43  
% 0.20/0.43  The encoding turns the above axioms into the following unit equations and goals:
% 0.20/0.43  
% 0.20/0.43  Axiom 1 (square_element): product(X, X, identity) = true.
% 0.20/0.43  Axiom 2 (right_identity): product(X, identity, X) = true.
% 0.20/0.43  Axiom 3 (a_times_b_is_c): product(a, b, c) = true.
% 0.20/0.43  Axiom 4 (left_identity): product(identity, X, X) = true.
% 0.20/0.43  Axiom 5 (total_function2): fresh(X, X, Y, Z) = Z.
% 0.20/0.43  Axiom 6 (associativity1): fresh8(X, X, Y, Z, W) = true.
% 0.20/0.43  Axiom 7 (associativity2): fresh6(X, X, Y, Z, W) = true.
% 0.20/0.43  Axiom 8 (total_function1): product(X, Y, multiply(X, Y)) = true.
% 0.20/0.43  Axiom 9 (total_function2): fresh2(X, X, Y, Z, W, V) = W.
% 0.20/0.43  Axiom 10 (associativity1): fresh4(X, X, Y, Z, W, V, U) = product(Y, V, U).
% 0.20/0.43  Axiom 11 (associativity2): fresh3(X, X, Y, Z, W, V, U) = product(W, V, U).
% 0.20/0.43  Axiom 12 (associativity1): fresh7(X, X, Y, Z, W, V, U, T) = fresh8(product(Y, Z, W), true, Y, U, T).
% 0.20/0.43  Axiom 13 (associativity2): fresh5(X, X, Y, Z, W, V, U, T) = fresh6(product(Y, Z, W), true, W, V, T).
% 0.20/0.43  Axiom 14 (total_function2): fresh2(product(X, Y, Z), true, X, Y, W, Z) = fresh(product(X, Y, W), true, W, Z).
% 0.20/0.43  Axiom 15 (associativity1): fresh7(product(X, Y, Z), true, W, V, X, Y, U, Z) = fresh4(product(V, Y, U), true, W, V, X, U, Z).
% 0.20/0.43  Axiom 16 (associativity2): fresh5(product(X, Y, Z), true, W, X, V, Y, Z, U) = fresh3(product(W, Z, U), true, W, X, V, Y, U).
% 0.20/0.43  
% 0.20/0.43  Lemma 17: fresh6(product(X, Y, Z), true, Z, Y, X) = product(Z, Y, X).
% 0.20/0.43  Proof:
% 0.20/0.43    fresh6(product(X, Y, Z), true, Z, Y, X)
% 0.20/0.43  = { by axiom 13 (associativity2) R->L }
% 0.20/0.43    fresh5(true, true, X, Y, Z, Y, identity, X)
% 0.20/0.43  = { by axiom 1 (square_element) R->L }
% 0.20/0.43    fresh5(product(Y, Y, identity), true, X, Y, Z, Y, identity, X)
% 0.20/0.43  = { by axiom 16 (associativity2) }
% 0.20/0.43    fresh3(product(X, identity, X), true, X, Y, Z, Y, X)
% 0.20/0.43  = { by axiom 2 (right_identity) }
% 0.20/0.43    fresh3(true, true, X, Y, Z, Y, X)
% 0.20/0.43  = { by axiom 11 (associativity2) }
% 0.20/0.43    product(Z, Y, X)
% 0.20/0.43  
% 0.20/0.43  Goal 1 (prove_b_times_a_is_c): product(b, a, c) = true.
% 0.20/0.43  Proof:
% 0.20/0.43    product(b, a, c)
% 0.20/0.43  = { by axiom 5 (total_function2) R->L }
% 0.20/0.43    product(b, a, fresh(true, true, multiply(b, a), c))
% 0.20/0.44  = { by axiom 7 (associativity2) R->L }
% 0.20/0.44    product(b, a, fresh(fresh6(true, true, identity, c, multiply(b, a)), true, multiply(b, a), c))
% 0.20/0.44  = { by axiom 6 (associativity1) R->L }
% 0.20/0.44    product(b, a, fresh(fresh6(fresh8(true, true, multiply(b, a), c, identity), true, identity, c, multiply(b, a)), true, multiply(b, a), c))
% 0.20/0.44  = { by axiom 7 (associativity2) R->L }
% 0.20/0.44    product(b, a, fresh(fresh6(fresh8(fresh6(true, true, multiply(b, a), a, b), true, multiply(b, a), c, identity), true, identity, c, multiply(b, a)), true, multiply(b, a), c))
% 0.20/0.44  = { by axiom 8 (total_function1) R->L }
% 0.20/0.44    product(b, a, fresh(fresh6(fresh8(fresh6(product(b, a, multiply(b, a)), true, multiply(b, a), a, b), true, multiply(b, a), c, identity), true, identity, c, multiply(b, a)), true, multiply(b, a), c))
% 0.20/0.44  = { by lemma 17 }
% 0.20/0.44    product(b, a, fresh(fresh6(fresh8(product(multiply(b, a), a, b), true, multiply(b, a), c, identity), true, identity, c, multiply(b, a)), true, multiply(b, a), c))
% 0.20/0.44  = { by axiom 12 (associativity1) R->L }
% 0.20/0.44    product(b, a, fresh(fresh6(fresh7(true, true, multiply(b, a), a, b, b, c, identity), true, identity, c, multiply(b, a)), true, multiply(b, a), c))
% 0.20/0.44  = { by axiom 1 (square_element) R->L }
% 0.20/0.44    product(b, a, fresh(fresh6(fresh7(product(b, b, identity), true, multiply(b, a), a, b, b, c, identity), true, identity, c, multiply(b, a)), true, multiply(b, a), c))
% 0.20/0.44  = { by axiom 15 (associativity1) }
% 0.20/0.44    product(b, a, fresh(fresh6(fresh4(product(a, b, c), true, multiply(b, a), a, b, c, identity), true, identity, c, multiply(b, a)), true, multiply(b, a), c))
% 0.20/0.44  = { by axiom 3 (a_times_b_is_c) }
% 0.20/0.44    product(b, a, fresh(fresh6(fresh4(true, true, multiply(b, a), a, b, c, identity), true, identity, c, multiply(b, a)), true, multiply(b, a), c))
% 0.20/0.44  = { by axiom 10 (associativity1) }
% 0.20/0.44    product(b, a, fresh(fresh6(product(multiply(b, a), c, identity), true, identity, c, multiply(b, a)), true, multiply(b, a), c))
% 0.20/0.44  = { by lemma 17 }
% 0.20/0.44    product(b, a, fresh(product(identity, c, multiply(b, a)), true, multiply(b, a), c))
% 0.20/0.44  = { by axiom 14 (total_function2) R->L }
% 0.20/0.44    product(b, a, fresh2(product(identity, c, c), true, identity, c, multiply(b, a), c))
% 0.20/0.44  = { by axiom 4 (left_identity) }
% 0.20/0.44    product(b, a, fresh2(true, true, identity, c, multiply(b, a), c))
% 0.20/0.44  = { by axiom 9 (total_function2) }
% 0.20/0.44    product(b, a, multiply(b, a))
% 0.20/0.44  = { by axiom 8 (total_function1) }
% 0.20/0.44    true
% 0.20/0.44  % SZS output end Proof
% 0.20/0.44  
% 0.20/0.44  RESULT: Unsatisfiable (the axioms are contradictory).
%------------------------------------------------------------------------------