TSTP Solution File: GEO589+1 by Zipperpin---2.1.9999

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Zipperpin---2.1.9999
% Problem  : GEO589+1 : TPTP v8.1.2. Released v7.5.0.
% Transfm  : NO INFORMATION
% Format   : NO INFORMATION
% Command  : python3 /export/starexec/sandbox/solver/bin/portfolio.lams.parallel.py %s %d /export/starexec/sandbox/tmp/tmp.RTmO9tEQU7 true

% Computer : n028.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Aug 30 23:59:17 EDT 2023

% Result   : Theorem 7.69s 1.66s
% Output   : Refutation 7.69s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   31
%            Number of leaves      :   34
% Syntax   : Number of formulae    :  110 (  39 unt;  14 typ;   0 def)
%            Number of atoms       :  188 (   0 equ;   0 cnn)
%            Maximal formula atoms :    6 (   1 avg)
%            Number of connectives :  913 (  54   ~;  52   |;  19   &; 767   @)
%                                         (   0 <=>;  21  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   19 (  10 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :   34 (  34   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   15 (  14 usr;   7 con; 0-8 aty)
%            Number of variables   :  313 (   0   ^; 313   !;   0   ?; 313   :)

% Comments : 
%------------------------------------------------------------------------------
thf(perp_type,type,
    perp: $i > $i > $i > $i > $o ).

thf(sk__21_type,type,
    sk__21: $i ).

thf(cong_type,type,
    cong: $i > $i > $i > $i > $o ).

thf(midp_type,type,
    midp: $i > $i > $i > $o ).

thf(sk__24_type,type,
    sk__24: $i ).

thf(circle_type,type,
    circle: $i > $i > $i > $i > $o ).

thf(eqangle_type,type,
    eqangle: $i > $i > $i > $i > $i > $i > $i > $i > $o ).

thf(sk__22_type,type,
    sk__22: $i ).

thf(sk__25_type,type,
    sk__25: $i ).

thf(sk__20_type,type,
    sk__20: $i ).

thf(coll_type,type,
    coll: $i > $i > $i > $o ).

thf(cyclic_type,type,
    cyclic: $i > $i > $i > $i > $o ).

thf(para_type,type,
    para: $i > $i > $i > $i > $o ).

thf(sk__23_type,type,
    sk__23: $i ).

thf(exemplo6GDDFULL416051,conjecture,
    ! [A: $i,B: $i,C: $i,O: $i,D: $i,E: $i,NWPNT1: $i,NWPNT2: $i] :
      ( ( ( circle @ O @ A @ B @ C )
        & ( perp @ A @ C @ B @ D )
        & ( circle @ O @ A @ D @ NWPNT1 )
        & ( circle @ O @ D @ E @ NWPNT2 )
        & ( coll @ E @ D @ O ) )
     => ( para @ B @ E @ A @ C ) ) ).

thf(zf_stmt_0,negated_conjecture,
    ~ ! [A: $i,B: $i,C: $i,O: $i,D: $i,E: $i,NWPNT1: $i,NWPNT2: $i] :
        ( ( ( circle @ O @ A @ B @ C )
          & ( perp @ A @ C @ B @ D )
          & ( circle @ O @ A @ D @ NWPNT1 )
          & ( circle @ O @ D @ E @ NWPNT2 )
          & ( coll @ E @ D @ O ) )
       => ( para @ B @ E @ A @ C ) ),
    inference('cnf.neg',[status(esa)],[exemplo6GDDFULL416051]) ).

thf(zip_derived_cl118,plain,
    ~ ( para @ sk__21 @ sk__25 @ sk__20 @ sk__22 ),
    inference(cnf,[status(esa)],[zf_stmt_0]) ).

thf(zip_derived_cl114,plain,
    circle @ sk__23 @ sk__20 @ sk__21 @ sk__22,
    inference(cnf,[status(esa)],[zf_stmt_0]) ).

thf(ruleD41,axiom,
    ! [A: $i,B: $i,P: $i,Q: $i] :
      ( ( cyclic @ A @ B @ P @ Q )
     => ( eqangle @ P @ A @ P @ B @ Q @ A @ Q @ B ) ) ).

thf(zip_derived_cl40,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i] :
      ( ( eqangle @ X0 @ X1 @ X0 @ X2 @ X3 @ X1 @ X3 @ X2 )
      | ~ ( cyclic @ X1 @ X2 @ X0 @ X3 ) ),
    inference(cnf,[status(esa)],[ruleD41]) ).

thf(zip_derived_cl115,plain,
    perp @ sk__20 @ sk__22 @ sk__21 @ sk__24,
    inference(cnf,[status(esa)],[zf_stmt_0]) ).

thf(ruleD8,axiom,
    ! [A: $i,B: $i,C: $i,D: $i] :
      ( ( perp @ A @ B @ C @ D )
     => ( perp @ C @ D @ A @ B ) ) ).

thf(zip_derived_cl7,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i] :
      ( ( perp @ X0 @ X1 @ X2 @ X3 )
      | ~ ( perp @ X2 @ X3 @ X0 @ X1 ) ),
    inference(cnf,[status(esa)],[ruleD8]) ).

thf(zip_derived_cl161,plain,
    perp @ sk__21 @ sk__24 @ sk__20 @ sk__22,
    inference('s_sup-',[status(thm)],[zip_derived_cl115,zip_derived_cl7]) ).

thf(zip_derived_cl115_001,plain,
    perp @ sk__20 @ sk__22 @ sk__21 @ sk__24,
    inference(cnf,[status(esa)],[zf_stmt_0]) ).

thf(ruleD9,axiom,
    ! [A: $i,B: $i,C: $i,D: $i,E: $i,F: $i] :
      ( ( ( perp @ A @ B @ C @ D )
        & ( perp @ C @ D @ E @ F ) )
     => ( para @ A @ B @ E @ F ) ) ).

thf(zip_derived_cl8,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i,X4: $i,X5: $i] :
      ( ~ ( perp @ X0 @ X1 @ X2 @ X3 )
      | ~ ( perp @ X2 @ X3 @ X4 @ X5 )
      | ( para @ X0 @ X1 @ X4 @ X5 ) ),
    inference(cnf,[status(esa)],[ruleD9]) ).

thf(zip_derived_cl171,plain,
    ! [X0: $i,X1: $i] :
      ( ~ ( perp @ sk__21 @ sk__24 @ X1 @ X0 )
      | ( para @ sk__20 @ sk__22 @ X1 @ X0 ) ),
    inference('s_sup-',[status(thm)],[zip_derived_cl115,zip_derived_cl8]) ).

thf(zip_derived_cl296,plain,
    para @ sk__20 @ sk__22 @ sk__20 @ sk__22,
    inference('s_sup-',[status(thm)],[zip_derived_cl161,zip_derived_cl171]) ).

thf(ruleD40,axiom,
    ! [A: $i,B: $i,C: $i,D: $i,P: $i,Q: $i] :
      ( ( para @ A @ B @ C @ D )
     => ( eqangle @ A @ B @ P @ Q @ C @ D @ P @ Q ) ) ).

thf(zip_derived_cl39,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i,X4: $i,X5: $i] :
      ( ~ ( para @ X0 @ X1 @ X2 @ X3 )
      | ( eqangle @ X0 @ X1 @ X4 @ X5 @ X2 @ X3 @ X4 @ X5 ) ),
    inference(cnf,[status(esa)],[ruleD40]) ).

thf(zip_derived_cl492,plain,
    ! [X0: $i,X1: $i] : ( eqangle @ sk__20 @ sk__22 @ X1 @ X0 @ sk__20 @ sk__22 @ X1 @ X0 ),
    inference('s_sup-',[status(thm)],[zip_derived_cl296,zip_derived_cl39]) ).

thf(ruleD42b,axiom,
    ! [A: $i,B: $i,P: $i,Q: $i] :
      ( ( ( eqangle @ P @ A @ P @ B @ Q @ A @ Q @ B )
        & ( coll @ P @ Q @ B ) )
     => ( cyclic @ A @ B @ P @ Q ) ) ).

thf(zip_derived_cl42,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i] :
      ( ( cyclic @ X0 @ X1 @ X2 @ X3 )
      | ~ ( coll @ X2 @ X3 @ X1 )
      | ~ ( eqangle @ X2 @ X0 @ X2 @ X1 @ X3 @ X0 @ X3 @ X1 ) ),
    inference(cnf,[status(esa)],[ruleD42b]) ).

thf(zip_derived_cl703,plain,
    ! [X0: $i] :
      ( ( cyclic @ sk__22 @ X0 @ sk__20 @ sk__20 )
      | ~ ( coll @ sk__20 @ sk__20 @ X0 ) ),
    inference('s_sup-',[status(thm)],[zip_derived_cl492,zip_derived_cl42]) ).

thf(zip_derived_cl492_002,plain,
    ! [X0: $i,X1: $i] : ( eqangle @ sk__20 @ sk__22 @ X1 @ X0 @ sk__20 @ sk__22 @ X1 @ X0 ),
    inference('s_sup-',[status(thm)],[zip_derived_cl296,zip_derived_cl39]) ).

thf(ruleD19,axiom,
    ! [A: $i,B: $i,C: $i,D: $i,P: $i,Q: $i,U: $i,V: $i] :
      ( ( eqangle @ A @ B @ C @ D @ P @ Q @ U @ V )
     => ( eqangle @ C @ D @ A @ B @ U @ V @ P @ Q ) ) ).

thf(zip_derived_cl18,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i,X4: $i,X5: $i,X6: $i,X7: $i] :
      ( ( eqangle @ X0 @ X1 @ X2 @ X3 @ X4 @ X5 @ X6 @ X7 )
      | ~ ( eqangle @ X2 @ X3 @ X0 @ X1 @ X6 @ X7 @ X4 @ X5 ) ),
    inference(cnf,[status(esa)],[ruleD19]) ).

thf(zip_derived_cl698,plain,
    ! [X0: $i,X1: $i] : ( eqangle @ X1 @ X0 @ sk__20 @ sk__22 @ X1 @ X0 @ sk__20 @ sk__22 ),
    inference('s_sup-',[status(thm)],[zip_derived_cl492,zip_derived_cl18]) ).

thf(ruleD39,axiom,
    ! [A: $i,B: $i,C: $i,D: $i,P: $i,Q: $i] :
      ( ( eqangle @ A @ B @ P @ Q @ C @ D @ P @ Q )
     => ( para @ A @ B @ C @ D ) ) ).

thf(zip_derived_cl38,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i,X4: $i,X5: $i] :
      ( ( para @ X0 @ X1 @ X2 @ X3 )
      | ~ ( eqangle @ X0 @ X1 @ X4 @ X5 @ X2 @ X3 @ X4 @ X5 ) ),
    inference(cnf,[status(esa)],[ruleD39]) ).

thf(zip_derived_cl1351,plain,
    ! [X0: $i,X1: $i] : ( para @ X1 @ X0 @ X1 @ X0 ),
    inference('s_sup-',[status(thm)],[zip_derived_cl698,zip_derived_cl38]) ).

thf(ruleD66,axiom,
    ! [A: $i,B: $i,C: $i] :
      ( ( para @ A @ B @ A @ C )
     => ( coll @ A @ B @ C ) ) ).

thf(zip_derived_cl66,plain,
    ! [X0: $i,X1: $i,X2: $i] :
      ( ( coll @ X0 @ X1 @ X2 )
      | ~ ( para @ X0 @ X1 @ X0 @ X2 ) ),
    inference(cnf,[status(esa)],[ruleD66]) ).

thf(zip_derived_cl1374,plain,
    ! [X0: $i,X1: $i] : ( coll @ X1 @ X0 @ X0 ),
    inference('s_sup-',[status(thm)],[zip_derived_cl1351,zip_derived_cl66]) ).

thf(ruleD2,axiom,
    ! [A: $i,B: $i,C: $i] :
      ( ( coll @ A @ B @ C )
     => ( coll @ B @ A @ C ) ) ).

thf(zip_derived_cl1,plain,
    ! [X0: $i,X1: $i,X2: $i] :
      ( ( coll @ X0 @ X1 @ X2 )
      | ~ ( coll @ X1 @ X0 @ X2 ) ),
    inference(cnf,[status(esa)],[ruleD2]) ).

thf(zip_derived_cl1384,plain,
    ! [X0: $i,X1: $i] : ( coll @ X0 @ X1 @ X0 ),
    inference('s_sup-',[status(thm)],[zip_derived_cl1374,zip_derived_cl1]) ).

thf(ruleD1,axiom,
    ! [A: $i,B: $i,C: $i] :
      ( ( coll @ A @ B @ C )
     => ( coll @ A @ C @ B ) ) ).

thf(zip_derived_cl0,plain,
    ! [X0: $i,X1: $i,X2: $i] :
      ( ( coll @ X0 @ X1 @ X2 )
      | ~ ( coll @ X0 @ X2 @ X1 ) ),
    inference(cnf,[status(esa)],[ruleD1]) ).

thf(zip_derived_cl1458,plain,
    ! [X0: $i,X1: $i] : ( coll @ X0 @ X0 @ X1 ),
    inference('s_sup-',[status(thm)],[zip_derived_cl1384,zip_derived_cl0]) ).

thf(zip_derived_cl1530,plain,
    ! [X0: $i] : ( cyclic @ sk__22 @ X0 @ sk__20 @ sk__20 ),
    inference(demod,[status(thm)],[zip_derived_cl703,zip_derived_cl1458]) ).

thf(ruleD15,axiom,
    ! [A: $i,B: $i,C: $i,D: $i] :
      ( ( cyclic @ A @ B @ C @ D )
     => ( cyclic @ A @ C @ B @ D ) ) ).

thf(zip_derived_cl14,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i] :
      ( ( cyclic @ X0 @ X1 @ X2 @ X3 )
      | ~ ( cyclic @ X0 @ X2 @ X1 @ X3 ) ),
    inference(cnf,[status(esa)],[ruleD15]) ).

thf(zip_derived_cl1602,plain,
    ! [X0: $i] : ( cyclic @ sk__22 @ sk__20 @ X0 @ sk__20 ),
    inference('s_sup-',[status(thm)],[zip_derived_cl1530,zip_derived_cl14]) ).

thf(ruleD14,axiom,
    ! [A: $i,B: $i,C: $i,D: $i] :
      ( ( cyclic @ A @ B @ C @ D )
     => ( cyclic @ A @ B @ D @ C ) ) ).

thf(zip_derived_cl13,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i] :
      ( ( cyclic @ X0 @ X1 @ X2 @ X3 )
      | ~ ( cyclic @ X0 @ X1 @ X3 @ X2 ) ),
    inference(cnf,[status(esa)],[ruleD14]) ).

thf(zip_derived_cl1643,plain,
    ! [X0: $i] : ( cyclic @ sk__22 @ sk__20 @ sk__20 @ X0 ),
    inference('s_sup-',[status(thm)],[zip_derived_cl1602,zip_derived_cl13]) ).

thf(ruleD17,axiom,
    ! [A: $i,B: $i,C: $i,D: $i,E: $i] :
      ( ( ( cyclic @ A @ B @ C @ D )
        & ( cyclic @ A @ B @ C @ E ) )
     => ( cyclic @ B @ C @ D @ E ) ) ).

thf(zip_derived_cl16,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i,X4: $i] :
      ( ~ ( cyclic @ X0 @ X1 @ X2 @ X3 )
      | ~ ( cyclic @ X0 @ X1 @ X2 @ X4 )
      | ( cyclic @ X1 @ X2 @ X3 @ X4 ) ),
    inference(cnf,[status(esa)],[ruleD17]) ).

thf(zip_derived_cl1777,plain,
    ! [X0: $i,X1: $i] :
      ( ~ ( cyclic @ sk__22 @ sk__20 @ sk__20 @ X1 )
      | ( cyclic @ sk__20 @ sk__20 @ X0 @ X1 ) ),
    inference('s_sup-',[status(thm)],[zip_derived_cl1643,zip_derived_cl16]) ).

thf(zip_derived_cl1643_003,plain,
    ! [X0: $i] : ( cyclic @ sk__22 @ sk__20 @ sk__20 @ X0 ),
    inference('s_sup-',[status(thm)],[zip_derived_cl1602,zip_derived_cl13]) ).

thf(zip_derived_cl1782,plain,
    ! [X0: $i,X1: $i] : ( cyclic @ sk__20 @ sk__20 @ X0 @ X1 ),
    inference(demod,[status(thm)],[zip_derived_cl1777,zip_derived_cl1643]) ).

thf(zip_derived_cl16_004,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i,X4: $i] :
      ( ~ ( cyclic @ X0 @ X1 @ X2 @ X3 )
      | ~ ( cyclic @ X0 @ X1 @ X2 @ X4 )
      | ( cyclic @ X1 @ X2 @ X3 @ X4 ) ),
    inference(cnf,[status(esa)],[ruleD17]) ).

thf(zip_derived_cl1783,plain,
    ! [X0: $i,X1: $i,X2: $i] :
      ( ~ ( cyclic @ sk__20 @ sk__20 @ X1 @ X2 )
      | ( cyclic @ sk__20 @ X1 @ X0 @ X2 ) ),
    inference('s_sup-',[status(thm)],[zip_derived_cl1782,zip_derived_cl16]) ).

thf(zip_derived_cl1782_005,plain,
    ! [X0: $i,X1: $i] : ( cyclic @ sk__20 @ sk__20 @ X0 @ X1 ),
    inference(demod,[status(thm)],[zip_derived_cl1777,zip_derived_cl1643]) ).

thf(zip_derived_cl1788,plain,
    ! [X0: $i,X1: $i,X2: $i] : ( cyclic @ sk__20 @ X1 @ X0 @ X2 ),
    inference(demod,[status(thm)],[zip_derived_cl1783,zip_derived_cl1782]) ).

thf(zip_derived_cl16_006,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i,X4: $i] :
      ( ~ ( cyclic @ X0 @ X1 @ X2 @ X3 )
      | ~ ( cyclic @ X0 @ X1 @ X2 @ X4 )
      | ( cyclic @ X1 @ X2 @ X3 @ X4 ) ),
    inference(cnf,[status(esa)],[ruleD17]) ).

thf(zip_derived_cl1789,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i] :
      ( ~ ( cyclic @ sk__20 @ X2 @ X1 @ X3 )
      | ( cyclic @ X2 @ X1 @ X0 @ X3 ) ),
    inference('s_sup-',[status(thm)],[zip_derived_cl1788,zip_derived_cl16]) ).

thf(zip_derived_cl1788_007,plain,
    ! [X0: $i,X1: $i,X2: $i] : ( cyclic @ sk__20 @ X1 @ X0 @ X2 ),
    inference(demod,[status(thm)],[zip_derived_cl1783,zip_derived_cl1782]) ).

thf(zip_derived_cl1794,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i] : ( cyclic @ X2 @ X1 @ X0 @ X3 ),
    inference(demod,[status(thm)],[zip_derived_cl1789,zip_derived_cl1788]) ).

thf(zip_derived_cl1830,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i] : ( eqangle @ X0 @ X1 @ X0 @ X2 @ X3 @ X1 @ X3 @ X2 ),
    inference(demod,[status(thm)],[zip_derived_cl40,zip_derived_cl1794]) ).

thf(ruleD51,axiom,
    ! [A: $i,B: $i,C: $i,O: $i,M: $i] :
      ( ( ( circle @ O @ A @ B @ C )
        & ( coll @ M @ B @ C )
        & ( eqangle @ A @ B @ A @ C @ O @ B @ O @ M ) )
     => ( midp @ M @ B @ C ) ) ).

thf(zip_derived_cl51,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i,X4: $i] :
      ( ~ ( circle @ X0 @ X1 @ X2 @ X3 )
      | ~ ( coll @ X4 @ X2 @ X3 )
      | ~ ( eqangle @ X1 @ X2 @ X1 @ X3 @ X0 @ X2 @ X0 @ X4 )
      | ( midp @ X4 @ X2 @ X3 ) ),
    inference(cnf,[status(esa)],[ruleD51]) ).

thf(zip_derived_cl1458_008,plain,
    ! [X0: $i,X1: $i] : ( coll @ X0 @ X0 @ X1 ),
    inference('s_sup-',[status(thm)],[zip_derived_cl1384,zip_derived_cl0]) ).

thf(ruleD3,axiom,
    ! [A: $i,B: $i,C: $i,D: $i] :
      ( ( ( coll @ A @ B @ C )
        & ( coll @ A @ B @ D ) )
     => ( coll @ C @ D @ A ) ) ).

thf(zip_derived_cl2,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i] :
      ( ~ ( coll @ X0 @ X1 @ X2 )
      | ~ ( coll @ X0 @ X1 @ X3 )
      | ( coll @ X2 @ X3 @ X0 ) ),
    inference(cnf,[status(esa)],[ruleD3]) ).

thf(zip_derived_cl1534,plain,
    ! [X0: $i,X1: $i,X2: $i] :
      ( ~ ( coll @ X1 @ X1 @ X2 )
      | ( coll @ X0 @ X2 @ X1 ) ),
    inference('s_sup-',[status(thm)],[zip_derived_cl1458,zip_derived_cl2]) ).

thf(zip_derived_cl1458_009,plain,
    ! [X0: $i,X1: $i] : ( coll @ X0 @ X0 @ X1 ),
    inference('s_sup-',[status(thm)],[zip_derived_cl1384,zip_derived_cl0]) ).

thf(zip_derived_cl1538,plain,
    ! [X0: $i,X1: $i,X2: $i] : ( coll @ X0 @ X2 @ X1 ),
    inference(demod,[status(thm)],[zip_derived_cl1534,zip_derived_cl1458]) ).

thf(zip_derived_cl1541,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i,X4: $i] :
      ( ~ ( circle @ X0 @ X1 @ X2 @ X3 )
      | ~ ( eqangle @ X1 @ X2 @ X1 @ X3 @ X0 @ X2 @ X0 @ X4 )
      | ( midp @ X4 @ X2 @ X3 ) ),
    inference(demod,[status(thm)],[zip_derived_cl51,zip_derived_cl1538]) ).

thf(zip_derived_cl2712,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i] :
      ( ~ ( circle @ X1 @ X3 @ X2 @ X0 )
      | ( midp @ X0 @ X2 @ X0 ) ),
    inference('s_sup-',[status(thm)],[zip_derived_cl1830,zip_derived_cl1541]) ).

thf(zip_derived_cl2715,plain,
    midp @ sk__22 @ sk__21 @ sk__22,
    inference('s_sup-',[status(thm)],[zip_derived_cl114,zip_derived_cl2712]) ).

thf(zip_derived_cl1351_010,plain,
    ! [X0: $i,X1: $i] : ( para @ X1 @ X0 @ X1 @ X0 ),
    inference('s_sup-',[status(thm)],[zip_derived_cl698,zip_derived_cl38]) ).

thf(ruleD45,axiom,
    ! [A: $i,B: $i,C: $i,E: $i,F: $i] :
      ( ( ( midp @ E @ A @ B )
        & ( para @ E @ F @ B @ C )
        & ( coll @ F @ A @ C ) )
     => ( midp @ F @ A @ C ) ) ).

thf(zip_derived_cl45,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i,X4: $i] :
      ( ~ ( midp @ X0 @ X1 @ X2 )
      | ~ ( para @ X0 @ X3 @ X2 @ X4 )
      | ~ ( coll @ X3 @ X1 @ X4 )
      | ( midp @ X3 @ X1 @ X4 ) ),
    inference(cnf,[status(esa)],[ruleD45]) ).

thf(zip_derived_cl1538_011,plain,
    ! [X0: $i,X1: $i,X2: $i] : ( coll @ X0 @ X2 @ X1 ),
    inference(demod,[status(thm)],[zip_derived_cl1534,zip_derived_cl1458]) ).

thf(zip_derived_cl1540,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i,X4: $i] :
      ( ~ ( midp @ X0 @ X1 @ X2 )
      | ~ ( para @ X0 @ X3 @ X2 @ X4 )
      | ( midp @ X3 @ X1 @ X4 ) ),
    inference(demod,[status(thm)],[zip_derived_cl45,zip_derived_cl1538]) ).

thf(zip_derived_cl1979,plain,
    ! [X0: $i,X1: $i,X2: $i] :
      ( ~ ( midp @ X1 @ X2 @ X1 )
      | ( midp @ X0 @ X2 @ X0 ) ),
    inference('s_sup-',[status(thm)],[zip_derived_cl1351,zip_derived_cl1540]) ).

thf(zip_derived_cl2727,plain,
    ! [X0: $i] : ( midp @ X0 @ sk__21 @ X0 ),
    inference('s_sup-',[status(thm)],[zip_derived_cl2715,zip_derived_cl1979]) ).

thf(zip_derived_cl1351_012,plain,
    ! [X0: $i,X1: $i] : ( para @ X1 @ X0 @ X1 @ X0 ),
    inference('s_sup-',[status(thm)],[zip_derived_cl698,zip_derived_cl38]) ).

thf(ruleD64,axiom,
    ! [A: $i,B: $i,C: $i,D: $i,M: $i] :
      ( ( ( midp @ M @ A @ B )
        & ( para @ A @ C @ B @ D )
        & ( para @ A @ D @ B @ C ) )
     => ( midp @ M @ C @ D ) ) ).

thf(zip_derived_cl64,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i,X4: $i] :
      ( ~ ( para @ X0 @ X1 @ X2 @ X3 )
      | ~ ( para @ X0 @ X3 @ X2 @ X1 )
      | ~ ( midp @ X4 @ X0 @ X2 )
      | ( midp @ X4 @ X3 @ X1 ) ),
    inference(cnf,[status(esa)],[ruleD64]) ).

thf(zip_derived_cl1368,plain,
    ! [X0: $i,X1: $i,X2: $i] :
      ( ~ ( midp @ X2 @ X1 @ X1 )
      | ( midp @ X2 @ X0 @ X0 ) ),
    inference('s_sup-',[status(thm)],[zip_derived_cl1351,zip_derived_cl64]) ).

thf(zip_derived_cl2738,plain,
    ! [X0: $i] : ( midp @ sk__21 @ X0 @ X0 ),
    inference('s_sup-',[status(thm)],[zip_derived_cl2727,zip_derived_cl1368]) ).

thf(ruleD68,axiom,
    ! [A: $i,B: $i,C: $i] :
      ( ( midp @ A @ B @ C )
     => ( cong @ A @ B @ A @ C ) ) ).

thf(zip_derived_cl68,plain,
    ! [X0: $i,X1: $i,X2: $i] :
      ( ( cong @ X0 @ X1 @ X0 @ X2 )
      | ~ ( midp @ X0 @ X1 @ X2 ) ),
    inference(cnf,[status(esa)],[ruleD68]) ).

thf(zip_derived_cl2777,plain,
    ! [X0: $i] : ( cong @ sk__21 @ X0 @ sk__21 @ X0 ),
    inference('s_sup-',[status(thm)],[zip_derived_cl2738,zip_derived_cl68]) ).

thf(ruleD56,axiom,
    ! [A: $i,B: $i,P: $i,Q: $i] :
      ( ( ( cong @ A @ P @ B @ P )
        & ( cong @ A @ Q @ B @ Q ) )
     => ( perp @ A @ B @ P @ Q ) ) ).

thf(zip_derived_cl56,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i] :
      ( ~ ( cong @ X0 @ X1 @ X2 @ X1 )
      | ~ ( cong @ X0 @ X3 @ X2 @ X3 )
      | ( perp @ X0 @ X2 @ X1 @ X3 ) ),
    inference(cnf,[status(esa)],[ruleD56]) ).

thf(zip_derived_cl2946,plain,
    ! [X0: $i,X1: $i] :
      ( ~ ( cong @ sk__21 @ X1 @ sk__21 @ X1 )
      | ( perp @ sk__21 @ sk__21 @ X0 @ X1 ) ),
    inference('s_sup-',[status(thm)],[zip_derived_cl2777,zip_derived_cl56]) ).

thf(zip_derived_cl2777_013,plain,
    ! [X0: $i] : ( cong @ sk__21 @ X0 @ sk__21 @ X0 ),
    inference('s_sup-',[status(thm)],[zip_derived_cl2738,zip_derived_cl68]) ).

thf(zip_derived_cl2947,plain,
    ! [X0: $i,X1: $i] : ( perp @ sk__21 @ sk__21 @ X0 @ X1 ),
    inference(demod,[status(thm)],[zip_derived_cl2946,zip_derived_cl2777]) ).

thf(zip_derived_cl7_014,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i] :
      ( ( perp @ X0 @ X1 @ X2 @ X3 )
      | ~ ( perp @ X2 @ X3 @ X0 @ X1 ) ),
    inference(cnf,[status(esa)],[ruleD8]) ).

thf(zip_derived_cl2952,plain,
    ! [X0: $i,X1: $i] : ( perp @ X1 @ X0 @ sk__21 @ sk__21 ),
    inference('s_sup-',[status(thm)],[zip_derived_cl2947,zip_derived_cl7]) ).

thf(zip_derived_cl8_015,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i,X4: $i,X5: $i] :
      ( ~ ( perp @ X0 @ X1 @ X2 @ X3 )
      | ~ ( perp @ X2 @ X3 @ X4 @ X5 )
      | ( para @ X0 @ X1 @ X4 @ X5 ) ),
    inference(cnf,[status(esa)],[ruleD9]) ).

thf(zip_derived_cl2964,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i] :
      ( ~ ( perp @ sk__21 @ sk__21 @ X3 @ X2 )
      | ( para @ X1 @ X0 @ X3 @ X2 ) ),
    inference('s_sup-',[status(thm)],[zip_derived_cl2952,zip_derived_cl8]) ).

thf(zip_derived_cl2947_016,plain,
    ! [X0: $i,X1: $i] : ( perp @ sk__21 @ sk__21 @ X0 @ X1 ),
    inference(demod,[status(thm)],[zip_derived_cl2946,zip_derived_cl2777]) ).

thf(zip_derived_cl2988,plain,
    ! [X0: $i,X1: $i,X2: $i,X3: $i] : ( para @ X1 @ X0 @ X3 @ X2 ),
    inference(demod,[status(thm)],[zip_derived_cl2964,zip_derived_cl2947]) ).

thf(zip_derived_cl2992,plain,
    $false,
    inference(demod,[status(thm)],[zip_derived_cl118,zip_derived_cl2988]) ).


%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.05/0.11  % Problem  : GEO589+1 : TPTP v8.1.2. Released v7.5.0.
% 0.05/0.11  % Command  : python3 /export/starexec/sandbox/solver/bin/portfolio.lams.parallel.py %s %d /export/starexec/sandbox/tmp/tmp.RTmO9tEQU7 true
% 0.11/0.32  % Computer : n028.cluster.edu
% 0.11/0.32  % Model    : x86_64 x86_64
% 0.11/0.32  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.11/0.32  % Memory   : 8042.1875MB
% 0.11/0.32  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.11/0.32  % CPULimit : 300
% 0.11/0.32  % WCLimit  : 300
% 0.11/0.32  % DateTime : Tue Aug 29 22:52:26 EDT 2023
% 0.11/0.32  % CPUTime  : 
% 0.11/0.32  % Running portfolio for 300 s
% 0.11/0.32  % File         : /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.11/0.32  % Number of cores: 8
% 0.11/0.32  % Python version: Python 3.6.8
% 0.11/0.32  % Running in FO mode
% 0.17/0.62  % Total configuration time : 435
% 0.17/0.62  % Estimated wc time : 1092
% 0.17/0.62  % Estimated cpu time (7 cpus) : 156.0
% 0.62/0.68  % /export/starexec/sandbox/solver/bin/fo/fo6_bce.sh running for 75s
% 0.62/0.69  % /export/starexec/sandbox/solver/bin/fo/fo3_bce.sh running for 75s
% 0.62/0.69  % /export/starexec/sandbox/solver/bin/fo/fo7.sh running for 63s
% 0.62/0.70  % /export/starexec/sandbox/solver/bin/fo/fo5.sh running for 50s
% 0.62/0.70  % /export/starexec/sandbox/solver/bin/fo/fo13.sh running for 50s
% 0.62/0.70  % /export/starexec/sandbox/solver/bin/fo/fo1_av.sh running for 75s
% 0.62/0.70  % /export/starexec/sandbox/solver/bin/fo/fo4.sh running for 50s
% 7.69/1.66  % Solved by fo/fo13.sh.
% 7.69/1.66  % done 1329 iterations in 0.933s
% 7.69/1.66  % SZS status Theorem for '/export/starexec/sandbox/benchmark/theBenchmark.p'
% 7.69/1.66  % SZS output start Refutation
% See solution above
% 7.69/1.66  
% 7.69/1.66  
% 7.91/1.66  % Terminating...
% 7.91/1.73  % Runner terminated.
% 7.91/1.75  % Zipperpin 1.5 exiting
%------------------------------------------------------------------------------