TSTP Solution File: GEO265+3 by Metis---2.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Metis---2.4
% Problem  : GEO265+3 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : metis --show proof --show saturation %s

% Computer : n032.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sat Jul 16 05:26:02 EDT 2022

% Result   : Theorem 0.10s 0.31s
% Output   : CNFRefutation 0.14s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   12
%            Number of leaves      :    4
% Syntax   : Number of formulae    :   36 (   6 unt;   0 def)
%            Number of atoms       :   72 (   0 equ)
%            Maximal formula atoms :    4 (   2 avg)
%            Number of connectives :   68 (  32   ~;  19   |;   5   &)
%                                         (   9 <=>;   3  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    6 (   4 avg)
%            Maximal term depth    :    2 (   1 avg)
%            Number of predicates  :    5 (   4 usr;   1 prp; 0-2 aty)
%            Number of functors    :    3 (   3 usr;   2 con; 0-1 aty)
%            Number of variables   :   56 (   0 sgn  36   !;   2   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(a1_defns,axiom,
    ! [X,Y] :
      ( unequally_directed_opposite_lines(X,Y)
    <=> unequally_directed_lines(X,reverse_line(Y)) ) ).

fof(a4_defns,axiom,
    ! [X,Y] :
      ( equally_directed_lines(X,Y)
    <=> ~ unequally_directed_lines(X,Y) ) ).

fof(a5_defns,axiom,
    ! [X,Y] :
      ( equally_directed_opposite_lines(X,Y)
    <=> ~ unequally_directed_opposite_lines(X,Y) ) ).

fof(con,conjecture,
    ! [L,M] :
      ( equally_directed_lines(L,reverse_line(M))
     => equally_directed_opposite_lines(L,M) ) ).

fof(subgoal_0,plain,
    ! [L,M] :
      ( equally_directed_lines(L,reverse_line(M))
     => equally_directed_opposite_lines(L,M) ),
    inference(strip,[],[con]) ).

fof(negate_0_0,plain,
    ~ ! [L,M] :
        ( equally_directed_lines(L,reverse_line(M))
       => equally_directed_opposite_lines(L,M) ),
    inference(negate,[],[subgoal_0]) ).

fof(normalize_0_0,plain,
    ? [L,M] :
      ( ~ equally_directed_opposite_lines(L,M)
      & equally_directed_lines(L,reverse_line(M)) ),
    inference(canonicalize,[],[negate_0_0]) ).

fof(normalize_0_1,plain,
    ( ~ equally_directed_opposite_lines(skolemFOFtoCNF_L,skolemFOFtoCNF_M)
    & equally_directed_lines(skolemFOFtoCNF_L,reverse_line(skolemFOFtoCNF_M)) ),
    inference(skolemize,[],[normalize_0_0]) ).

fof(normalize_0_2,plain,
    equally_directed_lines(skolemFOFtoCNF_L,reverse_line(skolemFOFtoCNF_M)),
    inference(conjunct,[],[normalize_0_1]) ).

fof(normalize_0_3,plain,
    ! [X,Y] :
      ( ~ equally_directed_lines(X,Y)
    <=> unequally_directed_lines(X,Y) ),
    inference(canonicalize,[],[a4_defns]) ).

fof(normalize_0_4,plain,
    ! [X,Y] :
      ( ~ equally_directed_lines(X,Y)
    <=> unequally_directed_lines(X,Y) ),
    inference(specialize,[],[normalize_0_3]) ).

fof(normalize_0_5,plain,
    ! [X,Y] :
      ( ( ~ equally_directed_lines(X,Y)
        | ~ unequally_directed_lines(X,Y) )
      & ( equally_directed_lines(X,Y)
        | unequally_directed_lines(X,Y) ) ),
    inference(clausify,[],[normalize_0_4]) ).

fof(normalize_0_6,plain,
    ! [X,Y] :
      ( ~ equally_directed_lines(X,Y)
      | ~ unequally_directed_lines(X,Y) ),
    inference(conjunct,[],[normalize_0_5]) ).

fof(normalize_0_7,plain,
    ! [X,Y] :
      ( ~ equally_directed_opposite_lines(X,Y)
    <=> unequally_directed_opposite_lines(X,Y) ),
    inference(canonicalize,[],[a5_defns]) ).

fof(normalize_0_8,plain,
    ! [X,Y] :
      ( ~ equally_directed_opposite_lines(X,Y)
    <=> unequally_directed_opposite_lines(X,Y) ),
    inference(specialize,[],[normalize_0_7]) ).

fof(normalize_0_9,plain,
    ! [X,Y] :
      ( ( ~ equally_directed_opposite_lines(X,Y)
        | ~ unequally_directed_opposite_lines(X,Y) )
      & ( equally_directed_opposite_lines(X,Y)
        | unequally_directed_opposite_lines(X,Y) ) ),
    inference(clausify,[],[normalize_0_8]) ).

fof(normalize_0_10,plain,
    ! [X,Y] :
      ( equally_directed_opposite_lines(X,Y)
      | unequally_directed_opposite_lines(X,Y) ),
    inference(conjunct,[],[normalize_0_9]) ).

fof(normalize_0_11,plain,
    ! [X,Y] :
      ( ~ unequally_directed_lines(X,reverse_line(Y))
    <=> ~ unequally_directed_opposite_lines(X,Y) ),
    inference(canonicalize,[],[a1_defns]) ).

fof(normalize_0_12,plain,
    ! [X,Y] :
      ( ~ unequally_directed_lines(X,reverse_line(Y))
    <=> ~ unequally_directed_opposite_lines(X,Y) ),
    inference(specialize,[],[normalize_0_11]) ).

fof(normalize_0_13,plain,
    ! [X,Y] :
      ( ( ~ unequally_directed_lines(X,reverse_line(Y))
        | unequally_directed_opposite_lines(X,Y) )
      & ( ~ unequally_directed_opposite_lines(X,Y)
        | unequally_directed_lines(X,reverse_line(Y)) ) ),
    inference(clausify,[],[normalize_0_12]) ).

fof(normalize_0_14,plain,
    ! [X,Y] :
      ( ~ unequally_directed_opposite_lines(X,Y)
      | unequally_directed_lines(X,reverse_line(Y)) ),
    inference(conjunct,[],[normalize_0_13]) ).

fof(normalize_0_15,plain,
    ~ equally_directed_opposite_lines(skolemFOFtoCNF_L,skolemFOFtoCNF_M),
    inference(conjunct,[],[normalize_0_1]) ).

cnf(refute_0_0,plain,
    equally_directed_lines(skolemFOFtoCNF_L,reverse_line(skolemFOFtoCNF_M)),
    inference(canonicalize,[],[normalize_0_2]) ).

cnf(refute_0_1,plain,
    ( ~ equally_directed_lines(X,Y)
    | ~ unequally_directed_lines(X,Y) ),
    inference(canonicalize,[],[normalize_0_6]) ).

cnf(refute_0_2,plain,
    ( ~ equally_directed_lines(X_44,reverse_line(X_45))
    | ~ unequally_directed_lines(X_44,reverse_line(X_45)) ),
    inference(subst,[],[refute_0_1:[bind(X,$fot(X_44)),bind(Y,$fot(reverse_line(X_45)))]]) ).

cnf(refute_0_3,plain,
    ( equally_directed_opposite_lines(X,Y)
    | unequally_directed_opposite_lines(X,Y) ),
    inference(canonicalize,[],[normalize_0_10]) ).

cnf(refute_0_4,plain,
    ( equally_directed_opposite_lines(X_40,X_41)
    | unequally_directed_opposite_lines(X_40,X_41) ),
    inference(subst,[],[refute_0_3:[bind(X,$fot(X_40)),bind(Y,$fot(X_41))]]) ).

cnf(refute_0_5,plain,
    ( ~ unequally_directed_opposite_lines(X,Y)
    | unequally_directed_lines(X,reverse_line(Y)) ),
    inference(canonicalize,[],[normalize_0_14]) ).

cnf(refute_0_6,plain,
    ( ~ unequally_directed_opposite_lines(X_40,X_41)
    | unequally_directed_lines(X_40,reverse_line(X_41)) ),
    inference(subst,[],[refute_0_5:[bind(X,$fot(X_40)),bind(Y,$fot(X_41))]]) ).

cnf(refute_0_7,plain,
    ( equally_directed_opposite_lines(X_40,X_41)
    | unequally_directed_lines(X_40,reverse_line(X_41)) ),
    inference(resolve,[$cnf( unequally_directed_opposite_lines(X_40,X_41) )],[refute_0_4,refute_0_6]) ).

cnf(refute_0_8,plain,
    ( equally_directed_opposite_lines(X_44,X_45)
    | unequally_directed_lines(X_44,reverse_line(X_45)) ),
    inference(subst,[],[refute_0_7:[bind(X_40,$fot(X_44)),bind(X_41,$fot(X_45))]]) ).

cnf(refute_0_9,plain,
    ( ~ equally_directed_lines(X_44,reverse_line(X_45))
    | equally_directed_opposite_lines(X_44,X_45) ),
    inference(resolve,[$cnf( unequally_directed_lines(X_44,reverse_line(X_45)) )],[refute_0_8,refute_0_2]) ).

cnf(refute_0_10,plain,
    ( ~ equally_directed_lines(skolemFOFtoCNF_L,reverse_line(skolemFOFtoCNF_M))
    | equally_directed_opposite_lines(skolemFOFtoCNF_L,skolemFOFtoCNF_M) ),
    inference(subst,[],[refute_0_9:[bind(X_44,$fot(skolemFOFtoCNF_L)),bind(X_45,$fot(skolemFOFtoCNF_M))]]) ).

cnf(refute_0_11,plain,
    equally_directed_opposite_lines(skolemFOFtoCNF_L,skolemFOFtoCNF_M),
    inference(resolve,[$cnf( equally_directed_lines(skolemFOFtoCNF_L,reverse_line(skolemFOFtoCNF_M)) )],[refute_0_0,refute_0_10]) ).

cnf(refute_0_12,plain,
    ~ equally_directed_opposite_lines(skolemFOFtoCNF_L,skolemFOFtoCNF_M),
    inference(canonicalize,[],[normalize_0_15]) ).

cnf(refute_0_13,plain,
    $false,
    inference(resolve,[$cnf( equally_directed_opposite_lines(skolemFOFtoCNF_L,skolemFOFtoCNF_M) )],[refute_0_11,refute_0_12]) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.05/0.09  % Problem  : GEO265+3 : TPTP v8.1.0. Released v4.0.0.
% 0.05/0.10  % Command  : metis --show proof --show saturation %s
% 0.10/0.28  % Computer : n032.cluster.edu
% 0.10/0.28  % Model    : x86_64 x86_64
% 0.10/0.28  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.10/0.28  % Memory   : 8042.1875MB
% 0.10/0.28  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.10/0.28  % CPULimit : 300
% 0.10/0.28  % WCLimit  : 600
% 0.10/0.28  % DateTime : Fri Jun 17 22:14:01 EDT 2022
% 0.10/0.29  % CPUTime  : 
% 0.10/0.29  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 0.10/0.31  % SZS status Theorem for /export/starexec/sandbox2/benchmark/theBenchmark.p
% 0.10/0.31  
% 0.10/0.31  % SZS output start CNFRefutation for /export/starexec/sandbox2/benchmark/theBenchmark.p
% See solution above
% 0.14/0.31  
%------------------------------------------------------------------------------