TSTP Solution File: GEO244+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : GEO244+1 : TPTP v8.1.2. Bugfixed v6.4.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n020.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Aug 30 23:28:19 EDT 2023

% Result   : Theorem 0.19s 0.43s
% Output   : Proof 0.19s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.11  % Problem  : GEO244+1 : TPTP v8.1.2. Bugfixed v6.4.0.
% 0.06/0.12  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.33  % Computer : n020.cluster.edu
% 0.13/0.33  % Model    : x86_64 x86_64
% 0.13/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.33  % Memory   : 8042.1875MB
% 0.13/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.33  % CPULimit : 300
% 0.13/0.33  % WCLimit  : 300
% 0.13/0.33  % DateTime : Tue Aug 29 21:56:58 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 0.19/0.43  Command-line arguments: --set-join --lhs-weight 1 --no-flatten-goal --complete-subsets --goal-heuristic
% 0.19/0.43  
% 0.19/0.43  % SZS status Theorem
% 0.19/0.43  
% 0.19/0.43  % SZS output start Proof
% 0.19/0.43  Take the following subset of the input axioms:
% 0.19/0.43    fof(bf_def, axiom, ![L, B, A2]: (before_on_line(L, A2, B) <=> (distinct_points(A2, B) & (~(left_apart_point(A2, L) | left_apart_point(A2, reverse_line(L))) & (~(left_apart_point(B, L) | left_apart_point(B, reverse_line(L))) & ~unequally_directed_lines(L, line_connecting(A2, B))))))).
% 0.19/0.43    fof(con, conjecture, ![A, C, B2]: (distinct_points(A, B2) => (left_apart_point(C, reverse_line(line_connecting(A, B2))) => left_apart_point(C, line_connecting(B2, A))))).
% 0.19/0.43    fof(oag1, axiom, ![A3]: ~distinct_points(A3, A3)).
% 0.19/0.43    fof(oag10, axiom, ![A3, L2]: ~(left_apart_point(A3, L2) | left_apart_point(A3, reverse_line(L2)))).
% 0.19/0.43    fof(oag11, axiom, ![M, L2]: ~(left_convergent_lines(L2, M) | left_convergent_lines(L2, reverse_line(M)))).
% 0.19/0.43    fof(oag3, axiom, ![L2]: ~distinct_lines(L2, L2)).
% 0.19/0.43    fof(oag5, axiom, ![L2]: ~unequally_directed_lines(L2, L2)).
% 0.19/0.43    fof(oagco10, axiom, ![A3, L2]: ~unequally_directed_lines(parallel_through_point(L2, A3), L2)).
% 0.19/0.43    fof(oagco5, axiom, ![A3, B2]: (distinct_points(A3, B2) => (~apart_point_and_line(A3, line_connecting(A3, B2)) & ~apart_point_and_line(B2, line_connecting(A3, B2))))).
% 0.19/0.43    fof(oagco6, axiom, ![L2, M2]: ((unequally_directed_lines(L2, M2) & unequally_directed_lines(L2, reverse_line(M2))) => (~apart_point_and_line(intersection_point(L2, M2), L2) & ~apart_point_and_line(intersection_point(L2, M2), M2)))).
% 0.19/0.43    fof(oagco7, axiom, ![A3, L2]: ~apart_point_and_line(A3, parallel_through_point(L2, A3))).
% 0.19/0.43    fof(oagco8, axiom, ![L2]: ~distinct_lines(L2, reverse_line(L2))).
% 0.19/0.43    fof(oagco9, axiom, ![A3, B2]: ~unequally_directed_lines(line_connecting(A3, B2), reverse_line(line_connecting(B2, A3)))).
% 0.19/0.43  
% 0.19/0.43  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.19/0.43  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.19/0.43  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.19/0.43    fresh(y, y, x1...xn) = u
% 0.19/0.43    C => fresh(s, t, x1...xn) = v
% 0.19/0.43  where fresh is a fresh function symbol and x1..xn are the free
% 0.19/0.43  variables of u and v.
% 0.19/0.43  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.19/0.43  input problem has no model of domain size 1).
% 0.19/0.43  
% 0.19/0.43  The encoding turns the above axioms into the following unit equations and goals:
% 0.19/0.43  
% 0.19/0.43  Axiom 1 (con): left_apart_point(c, reverse_line(line_connecting(a, b))) = true2.
% 0.19/0.43  
% 0.19/0.43  Goal 1 (oag10): left_apart_point(X, Y) = true2.
% 0.19/0.43  The goal is true when:
% 0.19/0.43    X = c
% 0.19/0.43    Y = reverse_line(line_connecting(a, b))
% 0.19/0.43  
% 0.19/0.43  Proof:
% 0.19/0.43    left_apart_point(c, reverse_line(line_connecting(a, b)))
% 0.19/0.43  = { by axiom 1 (con) }
% 0.19/0.43    true2
% 0.19/0.43  % SZS output end Proof
% 0.19/0.43  
% 0.19/0.43  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------