TSTP Solution File: GEO205+1 by SRASS---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SRASS---0.1
% Problem  : GEO205+1 : TPTP v5.0.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp
% Command  : SRASS -q2 -a 0 10 10 10 -i3 -n60 %s

% Computer : art03.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 2018MB
% OS       : Linux 2.6.26.8-57.fc8
% CPULimit : 300s
% DateTime : Wed Dec 29 05:09:35 EST 2010

% Result   : Theorem 2.17s
% Output   : Solution 2.17s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% Reading problem from /tmp/SystemOnTPTP24151/GEO205+1.tptp
% Adding relevance values
% Extracting the conjecture
% Sorting axioms by relevance
% Looking for THM       ... 
% found
% SZS status THM for /tmp/SystemOnTPTP24151/GEO205+1.tptp
% SZS output start Solution for /tmp/SystemOnTPTP24151/GEO205+1.tptp
% TreeLimitedRun: ----------------------------------------------------------
% TreeLimitedRun: /home/graph/tptp/Systems/EP---1.2/eproof --print-statistics -xAuto -tAuto --cpu-limit=60 --proof-time-unlimited --memory-limit=Auto --tstp-in --tstp-out /tmp/SRASS.s.p 
% TreeLimitedRun: CPU time limit is 60s
% TreeLimitedRun: WC  time limit is 120s
% TreeLimitedRun: PID is 24247
% TreeLimitedRun: ----------------------------------------------------------
% PrfWatch: 0.00 CPU 0.02 WC
% # Preprocessing time     : 0.011 s
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% fof(2, axiom,![X1]:~(distinct_lines(X1,X1)),file('/tmp/SRASS.s.p', apart2)).
% fof(3, axiom,![X1]:~(convergent_lines(X1,X1)),file('/tmp/SRASS.s.p', apart3)).
% fof(5, axiom,![X1]:![X2]:![X3]:(distinct_lines(X1,X2)=>(distinct_lines(X1,X3)|distinct_lines(X2,X3))),file('/tmp/SRASS.s.p', apart5)).
% fof(7, axiom,![X1]:![X2]:![X3]:(convergent_lines(X1,X2)=>(distinct_lines(X2,X3)|convergent_lines(X1,X3))),file('/tmp/SRASS.s.p', ceq3)).
% fof(8, axiom,![X1]:![X2]:(convergent_lines(X1,X2)=>~(apart_point_and_line(intersection_point(X1,X2),X1))),file('/tmp/SRASS.s.p', ci3)).
% fof(9, axiom,![X1]:![X2]:(convergent_lines(X1,X2)=>~(apart_point_and_line(intersection_point(X1,X2),X2))),file('/tmp/SRASS.s.p', ci4)).
% fof(10, axiom,![X1]:![X2]:![X4]:![X5]:((distinct_points(X1,X2)&distinct_lines(X4,X5))=>(((apart_point_and_line(X1,X4)|apart_point_and_line(X1,X5))|apart_point_and_line(X2,X4))|apart_point_and_line(X2,X5))),file('/tmp/SRASS.s.p', cu1)).
% fof(11, axiom,![X1]:![X2]:![X3]:(apart_point_and_line(X1,X2)=>(distinct_lines(X2,X3)|apart_point_and_line(X1,X3))),file('/tmp/SRASS.s.p', ceq2)).
% fof(15, conjecture,![X1]:![X2]:![X3]:((convergent_lines(X1,X2)&~(distinct_lines(X2,X3)))=>(convergent_lines(X1,X3)&~(distinct_points(intersection_point(X1,X2),intersection_point(X1,X3))))),file('/tmp/SRASS.s.p', con)).
% fof(16, negated_conjecture,~(![X1]:![X2]:![X3]:((convergent_lines(X1,X2)&~(distinct_lines(X2,X3)))=>(convergent_lines(X1,X3)&~(distinct_points(intersection_point(X1,X2),intersection_point(X1,X3)))))),inference(assume_negation,[status(cth)],[15])).
% fof(18, plain,![X1]:~(distinct_lines(X1,X1)),inference(fof_simplification,[status(thm)],[2,theory(equality)])).
% fof(19, plain,![X1]:~(convergent_lines(X1,X1)),inference(fof_simplification,[status(thm)],[3,theory(equality)])).
% fof(20, plain,![X1]:![X2]:(convergent_lines(X1,X2)=>~(apart_point_and_line(intersection_point(X1,X2),X1))),inference(fof_simplification,[status(thm)],[8,theory(equality)])).
% fof(21, plain,![X1]:![X2]:(convergent_lines(X1,X2)=>~(apart_point_and_line(intersection_point(X1,X2),X2))),inference(fof_simplification,[status(thm)],[9,theory(equality)])).
% fof(24, negated_conjecture,~(![X1]:![X2]:![X3]:((convergent_lines(X1,X2)&~(distinct_lines(X2,X3)))=>(convergent_lines(X1,X3)&~(distinct_points(intersection_point(X1,X2),intersection_point(X1,X3)))))),inference(fof_simplification,[status(thm)],[16,theory(equality)])).
% fof(27, plain,![X2]:~(distinct_lines(X2,X2)),inference(variable_rename,[status(thm)],[18])).
% cnf(28,plain,(~distinct_lines(X1,X1)),inference(split_conjunct,[status(thm)],[27])).
% fof(29, plain,![X2]:~(convergent_lines(X2,X2)),inference(variable_rename,[status(thm)],[19])).
% cnf(30,plain,(~convergent_lines(X1,X1)),inference(split_conjunct,[status(thm)],[29])).
% fof(34, plain,![X1]:![X2]:![X3]:(~(distinct_lines(X1,X2))|(distinct_lines(X1,X3)|distinct_lines(X2,X3))),inference(fof_nnf,[status(thm)],[5])).
% fof(35, plain,![X4]:![X5]:![X6]:(~(distinct_lines(X4,X5))|(distinct_lines(X4,X6)|distinct_lines(X5,X6))),inference(variable_rename,[status(thm)],[34])).
% cnf(36,plain,(distinct_lines(X1,X2)|distinct_lines(X3,X2)|~distinct_lines(X3,X1)),inference(split_conjunct,[status(thm)],[35])).
% fof(40, plain,![X1]:![X2]:![X3]:(~(convergent_lines(X1,X2))|(distinct_lines(X2,X3)|convergent_lines(X1,X3))),inference(fof_nnf,[status(thm)],[7])).
% fof(41, plain,![X4]:![X5]:![X6]:(~(convergent_lines(X4,X5))|(distinct_lines(X5,X6)|convergent_lines(X4,X6))),inference(variable_rename,[status(thm)],[40])).
% cnf(42,plain,(convergent_lines(X1,X2)|distinct_lines(X3,X2)|~convergent_lines(X1,X3)),inference(split_conjunct,[status(thm)],[41])).
% fof(43, plain,![X1]:![X2]:(~(convergent_lines(X1,X2))|~(apart_point_and_line(intersection_point(X1,X2),X1))),inference(fof_nnf,[status(thm)],[20])).
% fof(44, plain,![X3]:![X4]:(~(convergent_lines(X3,X4))|~(apart_point_and_line(intersection_point(X3,X4),X3))),inference(variable_rename,[status(thm)],[43])).
% cnf(45,plain,(~apart_point_and_line(intersection_point(X1,X2),X1)|~convergent_lines(X1,X2)),inference(split_conjunct,[status(thm)],[44])).
% fof(46, plain,![X1]:![X2]:(~(convergent_lines(X1,X2))|~(apart_point_and_line(intersection_point(X1,X2),X2))),inference(fof_nnf,[status(thm)],[21])).
% fof(47, plain,![X3]:![X4]:(~(convergent_lines(X3,X4))|~(apart_point_and_line(intersection_point(X3,X4),X4))),inference(variable_rename,[status(thm)],[46])).
% cnf(48,plain,(~apart_point_and_line(intersection_point(X1,X2),X2)|~convergent_lines(X1,X2)),inference(split_conjunct,[status(thm)],[47])).
% fof(49, plain,![X1]:![X2]:![X4]:![X5]:((~(distinct_points(X1,X2))|~(distinct_lines(X4,X5)))|(((apart_point_and_line(X1,X4)|apart_point_and_line(X1,X5))|apart_point_and_line(X2,X4))|apart_point_and_line(X2,X5))),inference(fof_nnf,[status(thm)],[10])).
% fof(50, plain,![X6]:![X7]:![X8]:![X9]:((~(distinct_points(X6,X7))|~(distinct_lines(X8,X9)))|(((apart_point_and_line(X6,X8)|apart_point_and_line(X6,X9))|apart_point_and_line(X7,X8))|apart_point_and_line(X7,X9))),inference(variable_rename,[status(thm)],[49])).
% cnf(51,plain,(apart_point_and_line(X1,X2)|apart_point_and_line(X1,X3)|apart_point_and_line(X4,X2)|apart_point_and_line(X4,X3)|~distinct_lines(X3,X2)|~distinct_points(X4,X1)),inference(split_conjunct,[status(thm)],[50])).
% fof(52, plain,![X1]:![X2]:![X3]:(~(apart_point_and_line(X1,X2))|(distinct_lines(X2,X3)|apart_point_and_line(X1,X3))),inference(fof_nnf,[status(thm)],[11])).
% fof(53, plain,![X4]:![X5]:![X6]:(~(apart_point_and_line(X4,X5))|(distinct_lines(X5,X6)|apart_point_and_line(X4,X6))),inference(variable_rename,[status(thm)],[52])).
% cnf(54,plain,(apart_point_and_line(X1,X2)|distinct_lines(X3,X2)|~apart_point_and_line(X1,X3)),inference(split_conjunct,[status(thm)],[53])).
% fof(64, negated_conjecture,?[X1]:?[X2]:?[X3]:((convergent_lines(X1,X2)&~(distinct_lines(X2,X3)))&(~(convergent_lines(X1,X3))|distinct_points(intersection_point(X1,X2),intersection_point(X1,X3)))),inference(fof_nnf,[status(thm)],[24])).
% fof(65, negated_conjecture,?[X4]:?[X5]:?[X6]:((convergent_lines(X4,X5)&~(distinct_lines(X5,X6)))&(~(convergent_lines(X4,X6))|distinct_points(intersection_point(X4,X5),intersection_point(X4,X6)))),inference(variable_rename,[status(thm)],[64])).
% fof(66, negated_conjecture,((convergent_lines(esk1_0,esk2_0)&~(distinct_lines(esk2_0,esk3_0)))&(~(convergent_lines(esk1_0,esk3_0))|distinct_points(intersection_point(esk1_0,esk2_0),intersection_point(esk1_0,esk3_0)))),inference(skolemize,[status(esa)],[65])).
% cnf(67,negated_conjecture,(distinct_points(intersection_point(esk1_0,esk2_0),intersection_point(esk1_0,esk3_0))|~convergent_lines(esk1_0,esk3_0)),inference(split_conjunct,[status(thm)],[66])).
% cnf(68,negated_conjecture,(~distinct_lines(esk2_0,esk3_0)),inference(split_conjunct,[status(thm)],[66])).
% cnf(69,negated_conjecture,(convergent_lines(esk1_0,esk2_0)),inference(split_conjunct,[status(thm)],[66])).
% cnf(71,negated_conjecture,(convergent_lines(esk1_0,X1)|distinct_lines(esk2_0,X1)),inference(spm,[status(thm)],[42,69,theory(equality)])).
% cnf(76,negated_conjecture,(convergent_lines(esk1_0,esk3_0)),inference(spm,[status(thm)],[68,71,theory(equality)])).
% cnf(80,negated_conjecture,(convergent_lines(esk1_0,X1)|distinct_lines(esk3_0,X1)),inference(spm,[status(thm)],[42,76,theory(equality)])).
% cnf(84,negated_conjecture,(distinct_points(intersection_point(esk1_0,esk2_0),intersection_point(esk1_0,esk3_0))|$false),inference(rw,[status(thm)],[67,76,theory(equality)])).
% cnf(85,negated_conjecture,(distinct_points(intersection_point(esk1_0,esk2_0),intersection_point(esk1_0,esk3_0))),inference(cn,[status(thm)],[84,theory(equality)])).
% cnf(88,negated_conjecture,(apart_point_and_line(X1,esk3_0)|apart_point_and_line(X1,X2)|apart_point_and_line(X3,esk3_0)|apart_point_and_line(X3,X2)|convergent_lines(esk1_0,X2)|~distinct_points(X1,X3)),inference(spm,[status(thm)],[51,80,theory(equality)])).
% cnf(140,negated_conjecture,(apart_point_and_line(intersection_point(esk1_0,esk3_0),esk3_0)|apart_point_and_line(intersection_point(esk1_0,esk2_0),esk3_0)|apart_point_and_line(intersection_point(esk1_0,esk3_0),X1)|apart_point_and_line(intersection_point(esk1_0,esk2_0),X1)|convergent_lines(esk1_0,X1)),inference(spm,[status(thm)],[88,85,theory(equality)])).
% cnf(776,negated_conjecture,(apart_point_and_line(intersection_point(esk1_0,esk2_0),esk3_0)|apart_point_and_line(intersection_point(esk1_0,esk2_0),X1)|apart_point_and_line(intersection_point(esk1_0,esk3_0),X1)|convergent_lines(esk1_0,X1)|~convergent_lines(esk1_0,esk3_0)),inference(spm,[status(thm)],[48,140,theory(equality)])).
% cnf(779,negated_conjecture,(apart_point_and_line(intersection_point(esk1_0,esk2_0),esk3_0)|apart_point_and_line(intersection_point(esk1_0,esk2_0),X1)|apart_point_and_line(intersection_point(esk1_0,esk3_0),X1)|convergent_lines(esk1_0,X1)|$false),inference(rw,[status(thm)],[776,76,theory(equality)])).
% cnf(780,negated_conjecture,(apart_point_and_line(intersection_point(esk1_0,esk2_0),esk3_0)|apart_point_and_line(intersection_point(esk1_0,esk2_0),X1)|apart_point_and_line(intersection_point(esk1_0,esk3_0),X1)|convergent_lines(esk1_0,X1)),inference(cn,[status(thm)],[779,theory(equality)])).
% cnf(12058,negated_conjecture,(apart_point_and_line(intersection_point(esk1_0,esk2_0),esk3_0)|apart_point_and_line(intersection_point(esk1_0,esk2_0),esk1_0)|convergent_lines(esk1_0,esk1_0)|~convergent_lines(esk1_0,esk3_0)),inference(spm,[status(thm)],[45,780,theory(equality)])).
% cnf(12062,negated_conjecture,(apart_point_and_line(intersection_point(esk1_0,esk2_0),esk3_0)|apart_point_and_line(intersection_point(esk1_0,esk2_0),esk1_0)|convergent_lines(esk1_0,esk1_0)|$false),inference(rw,[status(thm)],[12058,76,theory(equality)])).
% cnf(12063,negated_conjecture,(apart_point_and_line(intersection_point(esk1_0,esk2_0),esk3_0)|apart_point_and_line(intersection_point(esk1_0,esk2_0),esk1_0)|convergent_lines(esk1_0,esk1_0)),inference(cn,[status(thm)],[12062,theory(equality)])).
% cnf(12064,negated_conjecture,(apart_point_and_line(intersection_point(esk1_0,esk2_0),esk3_0)|apart_point_and_line(intersection_point(esk1_0,esk2_0),esk1_0)),inference(sr,[status(thm)],[12063,30,theory(equality)])).
% cnf(12066,negated_conjecture,(apart_point_and_line(intersection_point(esk1_0,esk2_0),X1)|distinct_lines(esk3_0,X1)|apart_point_and_line(intersection_point(esk1_0,esk2_0),esk1_0)),inference(spm,[status(thm)],[54,12064,theory(equality)])).
% cnf(12259,negated_conjecture,(apart_point_and_line(intersection_point(esk1_0,esk2_0),esk1_0)|distinct_lines(esk3_0,esk2_0)|~convergent_lines(esk1_0,esk2_0)),inference(spm,[status(thm)],[48,12066,theory(equality)])).
% cnf(12265,negated_conjecture,(apart_point_and_line(intersection_point(esk1_0,esk2_0),esk1_0)|distinct_lines(esk3_0,esk2_0)|$false),inference(rw,[status(thm)],[12259,69,theory(equality)])).
% cnf(12266,negated_conjecture,(apart_point_and_line(intersection_point(esk1_0,esk2_0),esk1_0)|distinct_lines(esk3_0,esk2_0)),inference(cn,[status(thm)],[12265,theory(equality)])).
% cnf(12271,negated_conjecture,(distinct_lines(esk3_0,esk2_0)|~convergent_lines(esk1_0,esk2_0)),inference(spm,[status(thm)],[45,12266,theory(equality)])).
% cnf(12272,negated_conjecture,(distinct_lines(esk3_0,esk2_0)|$false),inference(rw,[status(thm)],[12271,69,theory(equality)])).
% cnf(12273,negated_conjecture,(distinct_lines(esk3_0,esk2_0)),inference(cn,[status(thm)],[12272,theory(equality)])).
% cnf(12274,negated_conjecture,(distinct_lines(esk3_0,X1)|distinct_lines(esk2_0,X1)),inference(spm,[status(thm)],[36,12273,theory(equality)])).
% cnf(12277,negated_conjecture,(distinct_lines(esk2_0,esk3_0)),inference(spm,[status(thm)],[28,12274,theory(equality)])).
% cnf(12280,negated_conjecture,($false),inference(sr,[status(thm)],[12277,68,theory(equality)])).
% cnf(12281,negated_conjecture,($false),12280,['proof']).
% # SZS output end CNFRefutation
% # Processed clauses                  : 1825
% # ...of these trivial                : 2
% # ...subsumed                        : 1336
% # ...remaining for further processing: 487
% # Other redundant clauses eliminated : 0
% # Clauses deleted for lack of memory : 0
% # Backward-subsumed                  : 15
% # Backward-rewritten                 : 3
% # Generated clauses                  : 10787
% # ...of the previous two non-trivial : 10123
% # Contextual simplify-reflections    : 410
% # Paramodulations                    : 9341
% # Factorizations                     : 1446
% # Equation resolutions               : 0
% # Current number of processed clauses: 452
% #    Positive orientable unit clauses: 11
% #    Positive unorientable unit clauses: 0
% #    Negative unit clauses           : 4
% #    Non-unit-clauses                : 437
% # Current number of unprocessed clauses: 8213
% # ...number of literals in the above : 77258
% # Clause-clause subsumption calls (NU) : 51418
% # Rec. Clause-clause subsumption calls : 15509
% # Unit Clause-clause subsumption calls : 146
% # Rewrite failures with RHS unbound  : 0
% # Indexed BW rewrite attempts        : 5
% # Indexed BW rewrite successes       : 5
% # Backwards rewriting index:    64 leaves,   2.64+/-2.808 terms/leaf
% # Paramod-from index:           43 leaves,   2.42+/-2.285 terms/leaf
% # Paramod-into index:           55 leaves,   2.29+/-2.387 terms/leaf
% # -------------------------------------------------
% # User time              : 1.106 s
% # System time            : 0.014 s
% # Total time             : 1.120 s
% # Maximum resident set size: 0 pages
% PrfWatch: 1.37 CPU 1.45 WC
% FINAL PrfWatch: 1.37 CPU 1.45 WC
% SZS output end Solution for /tmp/SystemOnTPTP24151/GEO205+1.tptp
% 
%------------------------------------------------------------------------------