TSTP Solution File: GEO062-3 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : GEO062-3 : TPTP v8.1.2. Bugfixed v1.2.1.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n004.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Aug 30 23:27:09 EDT 2023

% Result   : Unsatisfiable 0.21s 0.69s
% Output   : Proof 2.19s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.08/0.13  % Problem  : GEO062-3 : TPTP v8.1.2. Bugfixed v1.2.1.
% 0.08/0.14  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.14/0.35  % Computer : n004.cluster.edu
% 0.14/0.35  % Model    : x86_64 x86_64
% 0.14/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.35  % Memory   : 8042.1875MB
% 0.14/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.35  % CPULimit : 300
% 0.14/0.35  % WCLimit  : 300
% 0.14/0.35  % DateTime : Tue Aug 29 20:22:22 EDT 2023
% 0.14/0.35  % CPUTime  : 
% 0.21/0.69  Command-line arguments: --flatten
% 0.21/0.69  
% 0.21/0.69  % SZS status Unsatisfiable
% 0.21/0.69  
% 2.19/0.70  % SZS output start Proof
% 2.19/0.70  Take the following subset of the input axioms:
% 2.19/0.70    fof(d1, axiom, ![V, U]: equidistant(U, V, U, V)).
% 2.19/0.70    fof(d15, axiom, ![X, V2, W, U2]: (~between(U2, V2, W) | (~equidistant(U2, V2, U2, X) | (~equidistant(W, V2, W, X) | V2=X)))).
% 2.19/0.70    fof(d4_2, axiom, ![V2, W2, U2, X2]: (~equidistant(U2, V2, W2, X2) | equidistant(V2, U2, X2, W2))).
% 2.19/0.70    fof(i2_1, axiom, ![V2, U1, W1, U2]: equidistant(U2, V2, U1, insertion(U1, W1, U2, V2))).
% 2.19/0.70    fof(i2_3, axiom, ![V2, W2, U2, U1_2, W1_2]: (~between(U2, V2, W2) | (~equidistant(U2, W2, U1_2, W1_2) | equidistant(V2, W2, insertion(U1_2, W1_2, U2, V2), W1_2)))).
% 2.19/0.70    fof(prove_v_equals_insertion, negated_conjecture, v!=insertion(u, w, u, v)).
% 2.19/0.70    fof(t1, axiom, ![V2, W2, U2]: (~between(U2, V2, W2) | between(W2, V2, U2))).
% 2.19/0.70    fof(v_between_u_and_w, hypothesis, between(u, v, w)).
% 2.19/0.70  
% 2.19/0.70  Now clausify the problem and encode Horn clauses using encoding 3 of
% 2.19/0.70  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 2.19/0.70  We repeatedly replace C & s=t => u=v by the two clauses:
% 2.19/0.70    fresh(y, y, x1...xn) = u
% 2.19/0.70    C => fresh(s, t, x1...xn) = v
% 2.19/0.70  where fresh is a fresh function symbol and x1..xn are the free
% 2.19/0.70  variables of u and v.
% 2.19/0.70  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 2.19/0.70  input problem has no model of domain size 1).
% 2.19/0.70  
% 2.19/0.70  The encoding turns the above axioms into the following unit equations and goals:
% 2.19/0.70  
% 2.19/0.70  Axiom 1 (v_between_u_and_w): between(u, v, w) = true2.
% 2.19/0.70  Axiom 2 (d15): fresh42(X, X, Y, Z) = Z.
% 2.19/0.70  Axiom 3 (d1): equidistant(X, Y, X, Y) = true2.
% 2.19/0.70  Axiom 4 (t1): fresh11(X, X, Y, Z, W) = true2.
% 2.19/0.70  Axiom 5 (d15): fresh4(X, X, Y, Z, W) = Z.
% 2.19/0.70  Axiom 6 (d4_2): fresh26(X, X, Y, Z, W, V) = true2.
% 2.19/0.70  Axiom 7 (i2_3): fresh16(X, X, Y, Z, W, V, U) = true2.
% 2.19/0.70  Axiom 8 (d15): fresh41(X, X, Y, Z, W, V) = fresh42(equidistant(Y, Z, Y, V), true2, Z, V).
% 2.19/0.70  Axiom 9 (t1): fresh11(between(X, Y, Z), true2, X, Y, Z) = between(Z, Y, X).
% 2.19/0.70  Axiom 10 (i2_1): equidistant(X, Y, Z, insertion(Z, W, X, Y)) = true2.
% 2.19/0.70  Axiom 11 (i2_3): fresh17(X, X, Y, Z, W, V, U) = equidistant(Z, W, insertion(V, U, Y, Z), U).
% 2.19/0.70  Axiom 12 (d15): fresh41(between(X, Y, Z), true2, X, Y, Z, W) = fresh4(equidistant(Z, Y, Z, W), true2, X, Y, W).
% 2.19/0.70  Axiom 13 (d4_2): fresh26(equidistant(X, Y, Z, W), true2, X, Y, Z, W) = equidistant(Y, X, W, Z).
% 2.19/0.70  Axiom 14 (i2_3): fresh17(between(X, Y, Z), true2, X, Y, Z, W, V) = fresh16(equidistant(X, Z, W, V), true2, X, Y, Z, W, V).
% 2.19/0.70  
% 2.19/0.70  Goal 1 (prove_v_equals_insertion): v = insertion(u, w, u, v).
% 2.19/0.70  Proof:
% 2.19/0.70    v
% 2.19/0.70  = { by axiom 5 (d15) R->L }
% 2.19/0.70    fresh4(between(u, v, w), between(u, v, w), w, v, insertion(u, w, u, v))
% 2.19/0.70  = { by axiom 1 (v_between_u_and_w) }
% 2.19/0.70    fresh4(true2, between(u, v, w), w, v, insertion(u, w, u, v))
% 2.19/0.70  = { by axiom 10 (i2_1) R->L }
% 2.19/0.70    fresh4(equidistant(u, v, u, insertion(u, w, u, v)), between(u, v, w), w, v, insertion(u, w, u, v))
% 2.19/0.70  = { by axiom 1 (v_between_u_and_w) }
% 2.19/0.70    fresh4(equidistant(u, v, u, insertion(u, w, u, v)), true2, w, v, insertion(u, w, u, v))
% 2.19/0.70  = { by axiom 12 (d15) R->L }
% 2.19/0.70    fresh41(between(w, v, u), true2, w, v, u, insertion(u, w, u, v))
% 2.19/0.70  = { by axiom 1 (v_between_u_and_w) R->L }
% 2.19/0.70    fresh41(between(w, v, u), between(u, v, w), w, v, u, insertion(u, w, u, v))
% 2.19/0.70  = { by axiom 9 (t1) R->L }
% 2.19/0.70    fresh41(fresh11(between(u, v, w), true2, u, v, w), between(u, v, w), w, v, u, insertion(u, w, u, v))
% 2.19/0.70  = { by axiom 1 (v_between_u_and_w) R->L }
% 2.19/0.70    fresh41(fresh11(between(u, v, w), between(u, v, w), u, v, w), between(u, v, w), w, v, u, insertion(u, w, u, v))
% 2.19/0.70  = { by axiom 4 (t1) }
% 2.19/0.70    fresh41(true2, between(u, v, w), w, v, u, insertion(u, w, u, v))
% 2.19/0.70  = { by axiom 1 (v_between_u_and_w) R->L }
% 2.19/0.70    fresh41(between(u, v, w), between(u, v, w), w, v, u, insertion(u, w, u, v))
% 2.19/0.70  = { by axiom 8 (d15) }
% 2.19/0.70    fresh42(equidistant(w, v, w, insertion(u, w, u, v)), true2, v, insertion(u, w, u, v))
% 2.19/0.70  = { by axiom 1 (v_between_u_and_w) R->L }
% 2.19/0.70    fresh42(equidistant(w, v, w, insertion(u, w, u, v)), between(u, v, w), v, insertion(u, w, u, v))
% 2.19/0.70  = { by axiom 13 (d4_2) R->L }
% 2.19/0.70    fresh42(fresh26(equidistant(v, w, insertion(u, w, u, v), w), true2, v, w, insertion(u, w, u, v), w), between(u, v, w), v, insertion(u, w, u, v))
% 2.19/0.70  = { by axiom 1 (v_between_u_and_w) R->L }
% 2.19/0.70    fresh42(fresh26(equidistant(v, w, insertion(u, w, u, v), w), between(u, v, w), v, w, insertion(u, w, u, v), w), between(u, v, w), v, insertion(u, w, u, v))
% 2.19/0.70  = { by axiom 11 (i2_3) R->L }
% 2.19/0.70    fresh42(fresh26(fresh17(between(u, v, w), between(u, v, w), u, v, w, u, w), between(u, v, w), v, w, insertion(u, w, u, v), w), between(u, v, w), v, insertion(u, w, u, v))
% 2.19/0.70  = { by axiom 1 (v_between_u_and_w) }
% 2.19/0.70    fresh42(fresh26(fresh17(between(u, v, w), true2, u, v, w, u, w), between(u, v, w), v, w, insertion(u, w, u, v), w), between(u, v, w), v, insertion(u, w, u, v))
% 2.19/0.70  = { by axiom 14 (i2_3) }
% 2.19/0.70    fresh42(fresh26(fresh16(equidistant(u, w, u, w), true2, u, v, w, u, w), between(u, v, w), v, w, insertion(u, w, u, v), w), between(u, v, w), v, insertion(u, w, u, v))
% 2.19/0.70  = { by axiom 1 (v_between_u_and_w) R->L }
% 2.19/0.70    fresh42(fresh26(fresh16(equidistant(u, w, u, w), between(u, v, w), u, v, w, u, w), between(u, v, w), v, w, insertion(u, w, u, v), w), between(u, v, w), v, insertion(u, w, u, v))
% 2.19/0.70  = { by axiom 3 (d1) }
% 2.19/0.71    fresh42(fresh26(fresh16(true2, between(u, v, w), u, v, w, u, w), between(u, v, w), v, w, insertion(u, w, u, v), w), between(u, v, w), v, insertion(u, w, u, v))
% 2.19/0.71  = { by axiom 1 (v_between_u_and_w) R->L }
% 2.19/0.71    fresh42(fresh26(fresh16(between(u, v, w), between(u, v, w), u, v, w, u, w), between(u, v, w), v, w, insertion(u, w, u, v), w), between(u, v, w), v, insertion(u, w, u, v))
% 2.19/0.71  = { by axiom 7 (i2_3) }
% 2.19/0.71    fresh42(fresh26(true2, between(u, v, w), v, w, insertion(u, w, u, v), w), between(u, v, w), v, insertion(u, w, u, v))
% 2.19/0.71  = { by axiom 1 (v_between_u_and_w) R->L }
% 2.19/0.71    fresh42(fresh26(between(u, v, w), between(u, v, w), v, w, insertion(u, w, u, v), w), between(u, v, w), v, insertion(u, w, u, v))
% 2.19/0.71  = { by axiom 6 (d4_2) }
% 2.19/0.71    fresh42(true2, between(u, v, w), v, insertion(u, w, u, v))
% 2.19/0.71  = { by axiom 1 (v_between_u_and_w) R->L }
% 2.19/0.71    fresh42(between(u, v, w), between(u, v, w), v, insertion(u, w, u, v))
% 2.19/0.71  = { by axiom 2 (d15) }
% 2.19/0.71    insertion(u, w, u, v)
% 2.19/0.71  % SZS output end Proof
% 2.19/0.71  
% 2.19/0.71  RESULT: Unsatisfiable (the axioms are contradictory).
%------------------------------------------------------------------------------