TSTP Solution File: GEO024-3 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : GEO024-3 : TPTP v8.1.0. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n005.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Sat Jul 16 02:50:57 EDT 2022

% Result   : Unsatisfiable 0.73s 1.11s
% Output   : Refutation 0.73s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.12/0.12  % Problem  : GEO024-3 : TPTP v8.1.0. Released v1.0.0.
% 0.12/0.13  % Command  : bliksem %s
% 0.12/0.34  % Computer : n005.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % DateTime : Sat Jun 18 14:18:23 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 0.73/1.11  *** allocated 10000 integers for termspace/termends
% 0.73/1.11  *** allocated 10000 integers for clauses
% 0.73/1.11  *** allocated 10000 integers for justifications
% 0.73/1.11  Bliksem 1.12
% 0.73/1.11  
% 0.73/1.11  
% 0.73/1.11  Automatic Strategy Selection
% 0.73/1.11  
% 0.73/1.11  Clauses:
% 0.73/1.11  [
% 0.73/1.11     [ equidistant( X, Y, Y, X ) ],
% 0.73/1.11     [ ~( equidistant( X, Y, Z, T ) ), ~( equidistant( X, Y, U, W ) ), 
% 0.73/1.11    equidistant( Z, T, U, W ) ],
% 0.73/1.11     [ ~( equidistant( X, Y, Z, Z ) ), =( X, Y ) ],
% 0.73/1.11     [ between( X, Y, extension( X, Y, Z, T ) ) ],
% 0.73/1.11     [ equidistant( X, extension( Y, X, Z, T ), Z, T ) ],
% 0.73/1.11     [ ~( equidistant( X, Y, Z, T ) ), ~( equidistant( Y, U, T, W ) ), ~( 
% 0.73/1.11    equidistant( X, V0, Z, V1 ) ), ~( equidistant( Y, V0, T, V1 ) ), ~( 
% 0.73/1.11    between( X, Y, U ) ), ~( between( Z, T, W ) ), =( X, Y ), equidistant( U
% 0.73/1.11    , V0, W, V1 ) ],
% 0.73/1.11     [ ~( between( X, Y, X ) ), =( X, Y ) ],
% 0.73/1.11     [ ~( between( X, Y, Z ) ), ~( between( T, U, Z ) ), between( Y, 
% 0.73/1.11    'inner_pasch'( X, Y, Z, U, T ), T ) ],
% 0.73/1.11     [ ~( between( X, Y, Z ) ), ~( between( T, U, Z ) ), between( U, 
% 0.73/1.11    'inner_pasch'( X, Y, Z, U, T ), X ) ],
% 0.73/1.11     [ ~( between( 'lower_dimension_point_1', 'lower_dimension_point_2', 
% 0.73/1.11    'lower_dimension_point_3' ) ) ],
% 0.73/1.11     [ ~( between( 'lower_dimension_point_2', 'lower_dimension_point_3', 
% 0.73/1.11    'lower_dimension_point_1' ) ) ],
% 0.73/1.11     [ ~( between( 'lower_dimension_point_3', 'lower_dimension_point_1', 
% 0.73/1.11    'lower_dimension_point_2' ) ) ],
% 0.73/1.11     [ ~( equidistant( X, Y, X, Z ) ), ~( equidistant( T, Y, T, Z ) ), ~( 
% 0.73/1.11    equidistant( U, Y, U, Z ) ), between( X, T, U ), between( T, U, X ), 
% 0.73/1.11    between( U, X, T ), =( Y, Z ) ],
% 0.73/1.11     [ ~( between( X, Y, Z ) ), ~( between( T, Y, U ) ), =( X, Y ), between( 
% 0.73/1.11    X, T, euclid1( X, T, Y, U, Z ) ) ],
% 0.73/1.11     [ ~( between( X, Y, Z ) ), ~( between( T, Y, U ) ), =( X, Y ), between( 
% 0.73/1.11    X, U, euclid2( X, T, Y, U, Z ) ) ],
% 0.73/1.11     [ ~( between( X, Y, Z ) ), ~( between( T, Y, U ) ), =( X, Y ), between( 
% 0.73/1.11    euclid1( X, T, Y, U, Z ), Z, euclid2( X, T, Y, U, Z ) ) ],
% 0.73/1.11     [ ~( equidistant( X, Y, X, Z ) ), ~( equidistant( X, T, X, U ) ), ~( 
% 0.73/1.11    between( X, Y, T ) ), ~( between( Y, W, T ) ), between( Z, continuous( X
% 0.73/1.11    , Y, Z, W, T, U ), U ) ],
% 0.73/1.11     [ ~( equidistant( X, Y, X, Z ) ), ~( equidistant( X, T, X, U ) ), ~( 
% 0.73/1.11    between( X, Y, T ) ), ~( between( Y, W, T ) ), equidistant( X, W, X, 
% 0.73/1.11    continuous( X, Y, Z, W, T, U ) ) ],
% 0.73/1.11     [ =( reflection( X, Y ), extension( X, Y, X, Y ) ) ],
% 0.73/1.11     [ equidistant( X, Y, X, Y ) ],
% 0.73/1.11     [ ~( equidistant( X, Y, Z, T ) ), equidistant( Z, T, X, Y ) ],
% 0.73/1.11     [ ~( equidistant( X, Y, Z, T ) ), equidistant( Y, X, Z, T ) ],
% 0.73/1.11     [ ~( equidistant( X, Y, Z, T ) ), equidistant( X, Y, T, Z ) ],
% 0.73/1.11     [ ~( equidistant( X, Y, Z, T ) ), equidistant( Y, X, T, Z ) ],
% 0.73/1.11     [ ~( equidistant( X, Y, Z, T ) ), equidistant( Z, T, Y, X ) ],
% 0.73/1.11     [ ~( equidistant( X, Y, Z, T ) ), equidistant( T, Z, X, Y ) ],
% 0.73/1.11     [ ~( equidistant( X, Y, Z, T ) ), equidistant( T, Z, Y, X ) ],
% 0.73/1.11     [ ~( equidistant( X, Y, Z, T ) ), ~( equidistant( Z, T, U, W ) ), 
% 0.73/1.11    equidistant( X, Y, U, W ) ],
% 0.73/1.11     [ =( X, extension( Y, X, Z, Z ) ) ],
% 0.73/1.11     [ ~( =( X, extension( Y, Z, T, U ) ) ), between( Y, Z, X ) ],
% 0.73/1.11     [ between( X, Y, reflection( X, Y ) ) ],
% 0.73/1.11     [ equidistant( X, reflection( Y, X ), Y, X ) ],
% 0.73/1.11     [ ~( =( X, Y ) ), =( Y, reflection( X, Y ) ) ],
% 0.73/1.11     [ =( X, reflection( X, X ) ) ],
% 0.73/1.11     [ ~( =( X, reflection( Y, X ) ) ), =( Y, X ) ],
% 0.73/1.11     [ ~( equidistant( u, u, v, v ) ) ]
% 0.73/1.11  ] .
% 0.73/1.11  
% 0.73/1.11  
% 0.73/1.11  percentage equality = 0.174419, percentage horn = 0.861111
% 0.73/1.11  This is a problem with some equality
% 0.73/1.11  
% 0.73/1.11  
% 0.73/1.11  
% 0.73/1.11  Options Used:
% 0.73/1.11  
% 0.73/1.11  useres =            1
% 0.73/1.11  useparamod =        1
% 0.73/1.11  useeqrefl =         1
% 0.73/1.11  useeqfact =         1
% 0.73/1.11  usefactor =         1
% 0.73/1.11  usesimpsplitting =  0
% 0.73/1.11  usesimpdemod =      5
% 0.73/1.11  usesimpres =        3
% 0.73/1.11  
% 0.73/1.11  resimpinuse      =  1000
% 0.73/1.11  resimpclauses =     20000
% 0.73/1.11  substype =          eqrewr
% 0.73/1.11  backwardsubs =      1
% 0.73/1.11  selectoldest =      5
% 0.73/1.11  
% 0.73/1.11  litorderings [0] =  split
% 0.73/1.11  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.73/1.11  
% 0.73/1.11  termordering =      kbo
% 0.73/1.11  
% 0.73/1.11  litapriori =        0
% 0.73/1.11  termapriori =       1
% 0.73/1.11  litaposteriori =    0
% 0.73/1.11  termaposteriori =   0
% 0.73/1.11  demodaposteriori =  0
% 0.73/1.11  ordereqreflfact =   0
% 0.73/1.11  
% 0.73/1.11  litselect =         negord
% 0.73/1.11  
% 0.73/1.11  maxweight =         15
% 0.73/1.11  maxdepth =          30000
% 0.73/1.11  maxlength =         115
% 0.73/1.11  maxnrvars =         195
% 0.73/1.11  excuselevel =       1
% 0.73/1.11  increasemaxweight = 1
% 0.73/1.11  
% 0.73/1.11  maxselected =       10000000
% 0.73/1.11  maxnrclauses =      10000000
% 0.73/1.11  
% 0.73/1.11  showgenerated =    0
% 0.73/1.11  showkept =         0
% 0.73/1.11  showselected =     0
% 0.73/1.11  showdeleted =      0
% 0.73/1.11  showresimp =       1
% 0.73/1.11  showstatus =       2000
% 0.73/1.11  
% 0.73/1.11  prologoutput =     1
% 0.73/1.11  nrgoals =          5000000
% 0.73/1.11  totalproof =       1
% 0.73/1.11  
% 0.73/1.11  Symbols occurring in the translation:
% 0.73/1.11  
% 0.73/1.11  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.73/1.11  .  [1, 2]      (w:1, o:30, a:1, s:1, b:0), 
% 0.73/1.11  !  [4, 1]      (w:0, o:25, a:1, s:1, b:0), 
% 0.73/1.11  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.73/1.11  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.73/1.11  equidistant  [41, 4]      (w:1, o:57, a:1, s:1, b:0), 
% 0.73/1.11  extension  [46, 4]      (w:1, o:58, a:1, s:1, b:0), 
% 0.73/1.11  between  [47, 3]      (w:1, o:56, a:1, s:1, b:0), 
% 0.73/1.11  'inner_pasch'  [53, 5]      (w:1, o:59, a:1, s:1, b:0), 
% 0.73/1.11  'lower_dimension_point_1'  [54, 0]      (w:1, o:20, a:1, s:1, b:0), 
% 0.73/1.11  'lower_dimension_point_2'  [55, 0]      (w:1, o:21, a:1, s:1, b:0), 
% 0.73/1.11  'lower_dimension_point_3'  [56, 0]      (w:1, o:22, a:1, s:1, b:0), 
% 0.73/1.11  euclid1  [57, 5]      (w:1, o:60, a:1, s:1, b:0), 
% 0.73/1.11  euclid2  [58, 5]      (w:1, o:61, a:1, s:1, b:0), 
% 0.73/1.11  continuous  [59, 6]      (w:1, o:62, a:1, s:1, b:0), 
% 0.73/1.11  reflection  [60, 2]      (w:1, o:55, a:1, s:1, b:0), 
% 0.73/1.11  u  [61, 0]      (w:1, o:23, a:1, s:1, b:0), 
% 0.73/1.11  v  [62, 0]      (w:1, o:24, a:1, s:1, b:0).
% 0.73/1.11  
% 0.73/1.11  
% 0.73/1.11  Starting Search:
% 0.73/1.11  
% 0.73/1.11  
% 0.73/1.11  Bliksems!, er is een bewijs:
% 0.73/1.11  % SZS status Unsatisfiable
% 0.73/1.11  % SZS output start Refutation
% 0.73/1.11  
% 0.73/1.11  clause( 4, [ equidistant( X, extension( Y, X, Z, T ), Z, T ) ] )
% 0.73/1.11  .
% 0.73/1.11  clause( 28, [ =( extension( Y, X, Z, Z ), X ) ] )
% 0.73/1.11  .
% 0.73/1.11  clause( 35, [ ~( equidistant( u, u, v, v ) ) ] )
% 0.73/1.11  .
% 0.73/1.11  clause( 166, [ equidistant( Y, Y, Z, Z ) ] )
% 0.73/1.11  .
% 0.73/1.11  clause( 171, [] )
% 0.73/1.11  .
% 0.73/1.11  
% 0.73/1.11  
% 0.73/1.11  % SZS output end Refutation
% 0.73/1.11  found a proof!
% 0.73/1.11  
% 0.73/1.11  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 0.73/1.11  
% 0.73/1.11  initialclauses(
% 0.73/1.11  [ clause( 173, [ equidistant( X, Y, Y, X ) ] )
% 0.73/1.11  , clause( 174, [ ~( equidistant( X, Y, Z, T ) ), ~( equidistant( X, Y, U, W
% 0.73/1.11     ) ), equidistant( Z, T, U, W ) ] )
% 0.73/1.11  , clause( 175, [ ~( equidistant( X, Y, Z, Z ) ), =( X, Y ) ] )
% 0.73/1.11  , clause( 176, [ between( X, Y, extension( X, Y, Z, T ) ) ] )
% 0.73/1.11  , clause( 177, [ equidistant( X, extension( Y, X, Z, T ), Z, T ) ] )
% 0.73/1.11  , clause( 178, [ ~( equidistant( X, Y, Z, T ) ), ~( equidistant( Y, U, T, W
% 0.73/1.11     ) ), ~( equidistant( X, V0, Z, V1 ) ), ~( equidistant( Y, V0, T, V1 ) )
% 0.73/1.11    , ~( between( X, Y, U ) ), ~( between( Z, T, W ) ), =( X, Y ), 
% 0.73/1.11    equidistant( U, V0, W, V1 ) ] )
% 0.73/1.11  , clause( 179, [ ~( between( X, Y, X ) ), =( X, Y ) ] )
% 0.73/1.11  , clause( 180, [ ~( between( X, Y, Z ) ), ~( between( T, U, Z ) ), between( 
% 0.73/1.11    Y, 'inner_pasch'( X, Y, Z, U, T ), T ) ] )
% 0.73/1.11  , clause( 181, [ ~( between( X, Y, Z ) ), ~( between( T, U, Z ) ), between( 
% 0.73/1.11    U, 'inner_pasch'( X, Y, Z, U, T ), X ) ] )
% 0.73/1.11  , clause( 182, [ ~( between( 'lower_dimension_point_1', 
% 0.73/1.11    'lower_dimension_point_2', 'lower_dimension_point_3' ) ) ] )
% 0.73/1.11  , clause( 183, [ ~( between( 'lower_dimension_point_2', 
% 0.73/1.11    'lower_dimension_point_3', 'lower_dimension_point_1' ) ) ] )
% 0.73/1.11  , clause( 184, [ ~( between( 'lower_dimension_point_3', 
% 0.73/1.11    'lower_dimension_point_1', 'lower_dimension_point_2' ) ) ] )
% 0.73/1.11  , clause( 185, [ ~( equidistant( X, Y, X, Z ) ), ~( equidistant( T, Y, T, Z
% 0.73/1.11     ) ), ~( equidistant( U, Y, U, Z ) ), between( X, T, U ), between( T, U, 
% 0.73/1.11    X ), between( U, X, T ), =( Y, Z ) ] )
% 0.73/1.11  , clause( 186, [ ~( between( X, Y, Z ) ), ~( between( T, Y, U ) ), =( X, Y
% 0.73/1.11     ), between( X, T, euclid1( X, T, Y, U, Z ) ) ] )
% 0.73/1.11  , clause( 187, [ ~( between( X, Y, Z ) ), ~( between( T, Y, U ) ), =( X, Y
% 0.73/1.11     ), between( X, U, euclid2( X, T, Y, U, Z ) ) ] )
% 0.73/1.11  , clause( 188, [ ~( between( X, Y, Z ) ), ~( between( T, Y, U ) ), =( X, Y
% 0.73/1.11     ), between( euclid1( X, T, Y, U, Z ), Z, euclid2( X, T, Y, U, Z ) ) ] )
% 0.73/1.11  , clause( 189, [ ~( equidistant( X, Y, X, Z ) ), ~( equidistant( X, T, X, U
% 0.73/1.11     ) ), ~( between( X, Y, T ) ), ~( between( Y, W, T ) ), between( Z, 
% 0.73/1.11    continuous( X, Y, Z, W, T, U ), U ) ] )
% 0.73/1.11  , clause( 190, [ ~( equidistant( X, Y, X, Z ) ), ~( equidistant( X, T, X, U
% 0.73/1.11     ) ), ~( between( X, Y, T ) ), ~( between( Y, W, T ) ), equidistant( X, W
% 0.73/1.11    , X, continuous( X, Y, Z, W, T, U ) ) ] )
% 0.73/1.11  , clause( 191, [ =( reflection( X, Y ), extension( X, Y, X, Y ) ) ] )
% 0.73/1.11  , clause( 192, [ equidistant( X, Y, X, Y ) ] )
% 0.73/1.11  , clause( 193, [ ~( equidistant( X, Y, Z, T ) ), equidistant( Z, T, X, Y )
% 0.73/1.11     ] )
% 0.73/1.11  , clause( 194, [ ~( equidistant( X, Y, Z, T ) ), equidistant( Y, X, Z, T )
% 0.73/1.11     ] )
% 0.73/1.11  , clause( 195, [ ~( equidistant( X, Y, Z, T ) ), equidistant( X, Y, T, Z )
% 0.73/1.11     ] )
% 0.73/1.11  , clause( 196, [ ~( equidistant( X, Y, Z, T ) ), equidistant( Y, X, T, Z )
% 0.73/1.11     ] )
% 0.73/1.11  , clause( 197, [ ~( equidistant( X, Y, Z, T ) ), equidistant( Z, T, Y, X )
% 0.73/1.11     ] )
% 0.73/1.11  , clause( 198, [ ~( equidistant( X, Y, Z, T ) ), equidistant( T, Z, X, Y )
% 0.73/1.11     ] )
% 0.73/1.11  , clause( 199, [ ~( equidistant( X, Y, Z, T ) ), equidistant( T, Z, Y, X )
% 0.73/1.11     ] )
% 0.73/1.11  , clause( 200, [ ~( equidistant( X, Y, Z, T ) ), ~( equidistant( Z, T, U, W
% 0.73/1.11     ) ), equidistant( X, Y, U, W ) ] )
% 0.73/1.11  , clause( 201, [ =( X, extension( Y, X, Z, Z ) ) ] )
% 0.73/1.11  , clause( 202, [ ~( =( X, extension( Y, Z, T, U ) ) ), between( Y, Z, X ) ]
% 0.73/1.11     )
% 0.73/1.11  , clause( 203, [ between( X, Y, reflection( X, Y ) ) ] )
% 0.73/1.11  , clause( 204, [ equidistant( X, reflection( Y, X ), Y, X ) ] )
% 0.73/1.11  , clause( 205, [ ~( =( X, Y ) ), =( Y, reflection( X, Y ) ) ] )
% 0.73/1.11  , clause( 206, [ =( X, reflection( X, X ) ) ] )
% 0.73/1.11  , clause( 207, [ ~( =( X, reflection( Y, X ) ) ), =( Y, X ) ] )
% 0.73/1.11  , clause( 208, [ ~( equidistant( u, u, v, v ) ) ] )
% 0.73/1.11  ] ).
% 0.73/1.11  
% 0.73/1.11  
% 0.73/1.11  
% 0.73/1.11  subsumption(
% 0.73/1.11  clause( 4, [ equidistant( X, extension( Y, X, Z, T ), Z, T ) ] )
% 0.73/1.11  , clause( 177, [ equidistant( X, extension( Y, X, Z, T ), Z, T ) ] )
% 0.73/1.11  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z ), :=( T, T )] ), 
% 0.73/1.11    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.73/1.11  
% 0.73/1.11  
% 0.73/1.11  eqswap(
% 0.73/1.11  clause( 271, [ =( extension( Y, X, Z, Z ), X ) ] )
% 0.73/1.11  , clause( 201, [ =( X, extension( Y, X, Z, Z ) ) ] )
% 0.73/1.11  , 0, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] )).
% 0.73/1.11  
% 0.73/1.11  
% 0.73/1.11  subsumption(
% 0.73/1.11  clause( 28, [ =( extension( Y, X, Z, Z ), X ) ] )
% 0.73/1.11  , clause( 271, [ =( extension( Y, X, Z, Z ), X ) ] )
% 0.73/1.11  , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 0.73/1.11    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.73/1.11  
% 0.73/1.11  
% 0.73/1.11  subsumption(
% 0.73/1.11  clause( 35, [ ~( equidistant( u, u, v, v ) ) ] )
% 0.73/1.11  , clause( 208, [ ~( equidistant( u, u, v, v ) ) ] )
% 0.73/1.11  , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.73/1.11  
% 0.73/1.11  
% 0.73/1.11  paramod(
% 0.73/1.11  clause( 342, [ equidistant( X, X, Z, Z ) ] )
% 0.73/1.11  , clause( 28, [ =( extension( Y, X, Z, Z ), X ) ] )
% 0.73/1.11  , 0, clause( 4, [ equidistant( X, extension( Y, X, Z, T ), Z, T ) ] )
% 0.73/1.11  , 0, 2, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), 
% 0.73/1.11    substitution( 1, [ :=( X, X ), :=( Y, Y ), :=( Z, Z ), :=( T, Z )] )).
% 0.73/1.11  
% 0.73/1.11  
% 0.73/1.11  subsumption(
% 0.73/1.11  clause( 166, [ equidistant( Y, Y, Z, Z ) ] )
% 0.73/1.11  , clause( 342, [ equidistant( X, X, Z, Z ) ] )
% 0.73/1.11  , substitution( 0, [ :=( X, Y ), :=( Y, T ), :=( Z, Z )] ), 
% 0.73/1.11    permutation( 0, [ ==>( 0, 0 )] ) ).
% 0.73/1.11  
% 0.73/1.11  
% 0.73/1.11  resolution(
% 0.73/1.11  clause( 343, [] )
% 0.73/1.11  , clause( 35, [ ~( equidistant( u, u, v, v ) ) ] )
% 0.73/1.11  , 0, clause( 166, [ equidistant( Y, Y, Z, Z ) ] )
% 0.73/1.11  , 0, substitution( 0, [] ), substitution( 1, [ :=( X, X ), :=( Y, u ), :=( 
% 0.73/1.11    Z, v )] )).
% 0.73/1.11  
% 0.73/1.11  
% 0.73/1.11  subsumption(
% 0.73/1.11  clause( 171, [] )
% 0.73/1.11  , clause( 343, [] )
% 0.73/1.11  , substitution( 0, [] ), permutation( 0, [] ) ).
% 0.73/1.11  
% 0.73/1.11  
% 0.73/1.11  end.
% 0.73/1.11  
% 0.73/1.11  % ABCDEFGHIJKLMNOPQRSTUVWXYZ
% 0.73/1.11  
% 0.73/1.11  Memory use:
% 0.73/1.11  
% 0.73/1.11  space for terms:        3546
% 0.73/1.11  space for clauses:      9181
% 0.73/1.11  
% 0.73/1.11  
% 0.73/1.11  clauses generated:      275
% 0.73/1.11  clauses kept:           172
% 0.73/1.11  clauses selected:       22
% 0.73/1.11  clauses deleted:        0
% 0.73/1.11  clauses inuse deleted:  0
% 0.73/1.11  
% 0.73/1.11  subsentry:          1375
% 0.73/1.11  literals s-matched: 1118
% 0.73/1.11  literals matched:   807
% 0.73/1.11  full subsumption:   425
% 0.73/1.11  
% 0.73/1.11  checksum:           1195219874
% 0.73/1.11  
% 0.73/1.11  
% 0.73/1.11  Bliksem ended
%------------------------------------------------------------------------------