TSTP Solution File: FLD027-1 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : FLD027-1 : TPTP v8.1.2. Bugfixed v2.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox/solver/bin/mcs_scs.jar %d %s

% Computer : n016.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Aug 30 22:27:24 EDT 2023

% Result   : Unsatisfiable 0.78s 0.92s
% Output   : CNFRefutation 0.78s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   15
%            Number of leaves      :   26
% Syntax   : Number of formulae    :   78 (  29 unt;  11 typ;   0 def)
%            Number of atoms       :  126 (   0 equ)
%            Maximal formula atoms :    4 (   1 avg)
%            Number of connectives :  121 (  62   ~;  59   |;   0   &)
%                                         (   0 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    5 (   3 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :   11 (   7   >;   4   *;   0   +;   0  <<)
%            Number of predicates  :    4 (   3 usr;   1 prp; 0-2 aty)
%            Number of functors    :    8 (   8 usr;   4 con; 0-2 aty)
%            Number of variables   :   61 (   0 sgn;   0   !;   0   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    add: ( $i * $i ) > $i ).

tff(decl_23,type,
    equalish: ( $i * $i ) > $o ).

tff(decl_24,type,
    defined: $i > $o ).

tff(decl_25,type,
    additive_identity: $i ).

tff(decl_26,type,
    additive_inverse: $i > $i ).

tff(decl_27,type,
    multiply: ( $i * $i ) > $i ).

tff(decl_28,type,
    multiplicative_identity: $i ).

tff(decl_29,type,
    multiplicative_inverse: $i > $i ).

tff(decl_30,type,
    less_or_equal: ( $i * $i ) > $o ).

tff(decl_31,type,
    a: $i ).

tff(decl_32,type,
    b: $i ).

cnf(existence_of_identity_multiplication,axiom,
    ( equalish(multiply(multiplicative_identity,X1),X1)
    | ~ defined(X1) ),
    file('/export/starexec/sandbox/benchmark/Axioms/FLD001-0.ax',existence_of_identity_multiplication) ).

cnf(b_is_defined,hypothesis,
    defined(b),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',b_is_defined) ).

cnf(existence_of_inverse_multiplication,axiom,
    ( equalish(multiply(X1,multiplicative_inverse(X1)),multiplicative_identity)
    | equalish(X1,additive_identity)
    | ~ defined(X1) ),
    file('/export/starexec/sandbox/benchmark/Axioms/FLD001-0.ax',existence_of_inverse_multiplication) ).

cnf(a_is_defined,hypothesis,
    defined(a),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',a_is_defined) ).

cnf(a_not_equal_to_additive_identity_3,negated_conjecture,
    ~ equalish(a,additive_identity),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',a_not_equal_to_additive_identity_3) ).

cnf(transitivity_of_equality,axiom,
    ( equalish(X1,X2)
    | ~ equalish(X1,X3)
    | ~ equalish(X3,X2) ),
    file('/export/starexec/sandbox/benchmark/Axioms/FLD001-0.ax',transitivity_of_equality) ).

cnf(compatibility_of_equality_and_multiplication,axiom,
    ( equalish(multiply(X1,X2),multiply(X3,X2))
    | ~ defined(X2)
    | ~ equalish(X1,X3) ),
    file('/export/starexec/sandbox/benchmark/Axioms/FLD001-0.ax',compatibility_of_equality_and_multiplication) ).

cnf(commutativity_multiplication,axiom,
    ( equalish(multiply(X1,X2),multiply(X2,X1))
    | ~ defined(X1)
    | ~ defined(X2) ),
    file('/export/starexec/sandbox/benchmark/Axioms/FLD001-0.ax',commutativity_multiplication) ).

cnf(well_definedness_of_multiplication,axiom,
    ( defined(multiply(X1,X2))
    | ~ defined(X1)
    | ~ defined(X2) ),
    file('/export/starexec/sandbox/benchmark/Axioms/FLD001-0.ax',well_definedness_of_multiplication) ).

cnf(well_definedness_of_multiplicative_inverse,axiom,
    ( defined(multiplicative_inverse(X1))
    | equalish(X1,additive_identity)
    | ~ defined(X1) ),
    file('/export/starexec/sandbox/benchmark/Axioms/FLD001-0.ax',well_definedness_of_multiplicative_inverse) ).

cnf(symmetry_of_equality,axiom,
    ( equalish(X1,X2)
    | ~ equalish(X2,X1) ),
    file('/export/starexec/sandbox/benchmark/Axioms/FLD001-0.ax',symmetry_of_equality) ).

cnf(associativity_multiplication,axiom,
    ( equalish(multiply(X1,multiply(X2,X3)),multiply(multiply(X1,X2),X3))
    | ~ defined(X1)
    | ~ defined(X2)
    | ~ defined(X3) ),
    file('/export/starexec/sandbox/benchmark/Axioms/FLD001-0.ax',associativity_multiplication) ).

cnf(b_not_equal_to_additive_identity_4,negated_conjecture,
    ~ equalish(b,additive_identity),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',b_not_equal_to_additive_identity_4) ).

cnf(multiplicative_inverses_equal,negated_conjecture,
    equalish(multiplicative_inverse(a),multiplicative_inverse(b)),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',multiplicative_inverses_equal) ).

cnf(a_not_equal_to_b_6,negated_conjecture,
    ~ equalish(a,b),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',a_not_equal_to_b_6) ).

cnf(c_0_15,axiom,
    ( equalish(multiply(multiplicative_identity,X1),X1)
    | ~ defined(X1) ),
    existence_of_identity_multiplication ).

cnf(c_0_16,hypothesis,
    defined(b),
    b_is_defined ).

cnf(c_0_17,axiom,
    ( equalish(multiply(X1,multiplicative_inverse(X1)),multiplicative_identity)
    | equalish(X1,additive_identity)
    | ~ defined(X1) ),
    existence_of_inverse_multiplication ).

cnf(c_0_18,hypothesis,
    defined(a),
    a_is_defined ).

cnf(c_0_19,negated_conjecture,
    ~ equalish(a,additive_identity),
    a_not_equal_to_additive_identity_3 ).

cnf(c_0_20,axiom,
    ( equalish(X1,X2)
    | ~ equalish(X1,X3)
    | ~ equalish(X3,X2) ),
    transitivity_of_equality ).

cnf(c_0_21,hypothesis,
    equalish(multiply(multiplicative_identity,b),b),
    inference(spm,[status(thm)],[c_0_15,c_0_16]) ).

cnf(c_0_22,axiom,
    ( equalish(multiply(X1,X2),multiply(X3,X2))
    | ~ defined(X2)
    | ~ equalish(X1,X3) ),
    compatibility_of_equality_and_multiplication ).

cnf(c_0_23,hypothesis,
    equalish(multiply(a,multiplicative_inverse(a)),multiplicative_identity),
    inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_17,c_0_18]),c_0_19]) ).

cnf(c_0_24,hypothesis,
    ( equalish(X1,b)
    | ~ equalish(X1,multiply(multiplicative_identity,b)) ),
    inference(spm,[status(thm)],[c_0_20,c_0_21]) ).

cnf(c_0_25,hypothesis,
    ( equalish(multiply(multiply(a,multiplicative_inverse(a)),X1),multiply(multiplicative_identity,X1))
    | ~ defined(X1) ),
    inference(spm,[status(thm)],[c_0_22,c_0_23]) ).

cnf(c_0_26,hypothesis,
    equalish(multiply(multiply(a,multiplicative_inverse(a)),b),b),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_24,c_0_25]),c_0_16])]) ).

cnf(c_0_27,axiom,
    ( equalish(multiply(X1,X2),multiply(X2,X1))
    | ~ defined(X1)
    | ~ defined(X2) ),
    commutativity_multiplication ).

cnf(c_0_28,axiom,
    ( defined(multiply(X1,X2))
    | ~ defined(X1)
    | ~ defined(X2) ),
    well_definedness_of_multiplication ).

cnf(c_0_29,axiom,
    ( defined(multiplicative_inverse(X1))
    | equalish(X1,additive_identity)
    | ~ defined(X1) ),
    well_definedness_of_multiplicative_inverse ).

cnf(c_0_30,hypothesis,
    ( equalish(X1,b)
    | ~ equalish(X1,multiply(multiply(a,multiplicative_inverse(a)),b)) ),
    inference(spm,[status(thm)],[c_0_20,c_0_26]) ).

cnf(c_0_31,plain,
    ( equalish(multiply(X1,multiply(X2,X3)),multiply(multiply(X2,X3),X1))
    | ~ defined(X1)
    | ~ defined(X3)
    | ~ defined(X2) ),
    inference(spm,[status(thm)],[c_0_27,c_0_28]) ).

cnf(c_0_32,hypothesis,
    defined(multiplicative_inverse(a)),
    inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_29,c_0_18]),c_0_19]) ).

cnf(c_0_33,hypothesis,
    equalish(multiply(b,multiply(a,multiplicative_inverse(a))),b),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_30,c_0_31]),c_0_16]),c_0_32]),c_0_18])]) ).

cnf(c_0_34,axiom,
    ( equalish(X1,X2)
    | ~ equalish(X2,X1) ),
    symmetry_of_equality ).

cnf(c_0_35,axiom,
    ( equalish(multiply(X1,multiply(X2,X3)),multiply(multiply(X1,X2),X3))
    | ~ defined(X1)
    | ~ defined(X2)
    | ~ defined(X3) ),
    associativity_multiplication ).

cnf(c_0_36,hypothesis,
    ( equalish(X1,b)
    | ~ equalish(X1,multiply(b,multiply(a,multiplicative_inverse(a)))) ),
    inference(spm,[status(thm)],[c_0_20,c_0_33]) ).

cnf(c_0_37,plain,
    ( equalish(multiply(multiply(X1,X2),X3),multiply(X1,multiply(X2,X3)))
    | ~ defined(X3)
    | ~ defined(X2)
    | ~ defined(X1) ),
    inference(spm,[status(thm)],[c_0_34,c_0_35]) ).

cnf(c_0_38,negated_conjecture,
    ~ equalish(b,additive_identity),
    b_not_equal_to_additive_identity_4 ).

cnf(c_0_39,hypothesis,
    equalish(multiply(multiply(b,a),multiplicative_inverse(a)),b),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_36,c_0_37]),c_0_32]),c_0_18]),c_0_16])]) ).

cnf(c_0_40,hypothesis,
    equalish(multiply(multiplicative_identity,a),a),
    inference(spm,[status(thm)],[c_0_15,c_0_18]) ).

cnf(c_0_41,hypothesis,
    equalish(multiply(b,multiplicative_inverse(b)),multiplicative_identity),
    inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_17,c_0_16]),c_0_38]) ).

cnf(c_0_42,hypothesis,
    ( equalish(X1,b)
    | ~ equalish(X1,multiply(multiply(b,a),multiplicative_inverse(a))) ),
    inference(spm,[status(thm)],[c_0_20,c_0_39]) ).

cnf(c_0_43,hypothesis,
    ( equalish(X1,a)
    | ~ equalish(X1,multiply(multiplicative_identity,a)) ),
    inference(spm,[status(thm)],[c_0_20,c_0_40]) ).

cnf(c_0_44,hypothesis,
    ( equalish(multiply(multiply(b,multiplicative_inverse(b)),X1),multiply(multiplicative_identity,X1))
    | ~ defined(X1) ),
    inference(spm,[status(thm)],[c_0_22,c_0_41]) ).

cnf(c_0_45,hypothesis,
    equalish(multiplicative_identity,multiply(b,multiplicative_inverse(b))),
    inference(spm,[status(thm)],[c_0_34,c_0_41]) ).

cnf(c_0_46,hypothesis,
    equalish(multiply(multiplicative_inverse(a),multiply(b,a)),b),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_42,c_0_31]),c_0_32]),c_0_18]),c_0_16])]) ).

cnf(c_0_47,hypothesis,
    equalish(multiply(multiply(b,multiplicative_inverse(b)),a),a),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_43,c_0_44]),c_0_18])]) ).

cnf(c_0_48,hypothesis,
    ( equalish(X1,multiply(b,multiplicative_inverse(b)))
    | ~ equalish(X1,multiplicative_identity) ),
    inference(spm,[status(thm)],[c_0_20,c_0_45]) ).

cnf(c_0_49,hypothesis,
    ( equalish(multiply(X1,b),multiply(b,X1))
    | ~ defined(X1) ),
    inference(spm,[status(thm)],[c_0_27,c_0_16]) ).

cnf(c_0_50,hypothesis,
    defined(multiplicative_inverse(b)),
    inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_29,c_0_16]),c_0_38]) ).

cnf(c_0_51,hypothesis,
    ( equalish(X1,b)
    | ~ equalish(X1,multiply(multiplicative_inverse(a),multiply(b,a))) ),
    inference(spm,[status(thm)],[c_0_20,c_0_46]) ).

cnf(c_0_52,hypothesis,
    ( equalish(X1,a)
    | ~ equalish(X1,multiply(multiply(b,multiplicative_inverse(b)),a)) ),
    inference(spm,[status(thm)],[c_0_20,c_0_47]) ).

cnf(c_0_53,hypothesis,
    ( equalish(multiply(X1,X2),multiply(multiply(b,multiplicative_inverse(b)),X2))
    | ~ defined(X2)
    | ~ equalish(X1,multiplicative_identity) ),
    inference(spm,[status(thm)],[c_0_22,c_0_48]) ).

cnf(c_0_54,hypothesis,
    ( equalish(X1,multiplicative_identity)
    | ~ equalish(X1,multiply(b,multiplicative_inverse(b))) ),
    inference(spm,[status(thm)],[c_0_20,c_0_41]) ).

cnf(c_0_55,hypothesis,
    equalish(multiply(multiplicative_inverse(b),b),multiply(b,multiplicative_inverse(b))),
    inference(spm,[status(thm)],[c_0_49,c_0_50]) ).

cnf(c_0_56,hypothesis,
    equalish(multiply(multiply(multiplicative_inverse(a),b),a),b),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_51,c_0_37]),c_0_18]),c_0_16]),c_0_32])]) ).

cnf(c_0_57,hypothesis,
    ( equalish(multiply(X1,a),a)
    | ~ equalish(X1,multiplicative_identity) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_52,c_0_53]),c_0_18])]) ).

cnf(c_0_58,hypothesis,
    equalish(multiply(multiplicative_inverse(b),b),multiplicative_identity),
    inference(spm,[status(thm)],[c_0_54,c_0_55]) ).

cnf(c_0_59,negated_conjecture,
    equalish(multiplicative_inverse(a),multiplicative_inverse(b)),
    multiplicative_inverses_equal ).

cnf(c_0_60,hypothesis,
    ( equalish(X1,b)
    | ~ equalish(X1,multiply(multiply(multiplicative_inverse(a),b),a)) ),
    inference(spm,[status(thm)],[c_0_20,c_0_56]) ).

cnf(c_0_61,hypothesis,
    ( equalish(a,multiply(X1,a))
    | ~ equalish(X1,multiplicative_identity) ),
    inference(spm,[status(thm)],[c_0_34,c_0_57]) ).

cnf(c_0_62,negated_conjecture,
    ~ equalish(a,b),
    a_not_equal_to_b_6 ).

cnf(c_0_63,hypothesis,
    ( equalish(X1,multiplicative_identity)
    | ~ equalish(X1,multiply(multiplicative_inverse(b),b)) ),
    inference(spm,[status(thm)],[c_0_20,c_0_58]) ).

cnf(c_0_64,negated_conjecture,
    ( equalish(multiply(multiplicative_inverse(a),X1),multiply(multiplicative_inverse(b),X1))
    | ~ defined(X1) ),
    inference(spm,[status(thm)],[c_0_22,c_0_59]) ).

cnf(c_0_65,hypothesis,
    ~ equalish(multiply(multiplicative_inverse(a),b),multiplicative_identity),
    inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_60,c_0_61]),c_0_62]) ).

cnf(c_0_66,negated_conjecture,
    $false,
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_63,c_0_64]),c_0_16])]),c_0_65]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.13  % Problem    : FLD027-1 : TPTP v8.1.2. Bugfixed v2.1.0.
% 0.00/0.13  % Command    : java -jar /export/starexec/sandbox/solver/bin/mcs_scs.jar %d %s
% 0.16/0.35  % Computer : n016.cluster.edu
% 0.16/0.35  % Model    : x86_64 x86_64
% 0.16/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.16/0.35  % Memory   : 8042.1875MB
% 0.16/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.16/0.35  % CPULimit   : 300
% 0.16/0.35  % WCLimit    : 300
% 0.16/0.35  % DateTime   : Mon Aug 28 01:08:44 EDT 2023
% 0.16/0.35  % CPUTime  : 
% 0.20/0.56  start to proof: theBenchmark
% 0.78/0.92  % Version  : CSE_E---1.5
% 0.78/0.92  % Problem  : theBenchmark.p
% 0.78/0.92  % Proof found
% 0.78/0.92  % SZS status Theorem for theBenchmark.p
% 0.78/0.92  % SZS output start Proof
% See solution above
% 0.78/0.93  % Total time : 0.348000 s
% 0.78/0.93  % SZS output end Proof
% 0.78/0.93  % Total time : 0.352000 s
%------------------------------------------------------------------------------