TSTP Solution File: FLD022-1 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : FLD022-1 : TPTP v8.1.2. Bugfixed v2.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s

% Computer : n010.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Aug 30 22:27:21 EDT 2023

% Result   : Unsatisfiable 5.03s 5.11s
% Output   : CNFRefutation 5.03s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   17
%            Number of leaves      :   26
% Syntax   : Number of formulae    :   62 (  15 unt;  12 typ;   0 def)
%            Number of atoms       :  110 (   0 equ)
%            Maximal formula atoms :    5 (   2 avg)
%            Number of connectives :  122 (  62   ~;  60   |;   0   &)
%                                         (   0 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    6 (   3 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :   11 (   7   >;   4   *;   0   +;   0  <<)
%            Number of predicates  :    4 (   3 usr;   1 prp; 0-2 aty)
%            Number of functors    :    9 (   9 usr;   5 con; 0-2 aty)
%            Number of variables   :   63 (   0 sgn;   0   !;   0   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    add: ( $i * $i ) > $i ).

tff(decl_23,type,
    equalish: ( $i * $i ) > $o ).

tff(decl_24,type,
    defined: $i > $o ).

tff(decl_25,type,
    additive_identity: $i ).

tff(decl_26,type,
    additive_inverse: $i > $i ).

tff(decl_27,type,
    multiply: ( $i * $i ) > $i ).

tff(decl_28,type,
    multiplicative_identity: $i ).

tff(decl_29,type,
    multiplicative_inverse: $i > $i ).

tff(decl_30,type,
    less_or_equal: ( $i * $i ) > $o ).

tff(decl_31,type,
    a: $i ).

tff(decl_32,type,
    b: $i ).

tff(decl_33,type,
    c: $i ).

cnf(compatibility_of_equality_and_addition,axiom,
    ( equalish(add(X1,X2),add(X3,X2))
    | ~ defined(X2)
    | ~ equalish(X1,X3) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/FLD001-0.ax',compatibility_of_equality_and_addition) ).

cnf(add_equals_add_4,negated_conjecture,
    equalish(add(a,c),add(b,c)),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',add_equals_add_4) ).

cnf(transitivity_of_equality,axiom,
    ( equalish(X1,X2)
    | ~ equalish(X1,X3)
    | ~ equalish(X3,X2) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/FLD001-0.ax',transitivity_of_equality) ).

cnf(associativity_addition,axiom,
    ( equalish(add(X1,add(X2,X3)),add(add(X1,X2),X3))
    | ~ defined(X1)
    | ~ defined(X2)
    | ~ defined(X3) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/FLD001-0.ax',associativity_addition) ).

cnf(c_is_defined,hypothesis,
    defined(c),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',c_is_defined) ).

cnf(a_is_defined,hypothesis,
    defined(a),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',a_is_defined) ).

cnf(commutativity_addition,axiom,
    ( equalish(add(X1,X2),add(X2,X1))
    | ~ defined(X1)
    | ~ defined(X2) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/FLD001-0.ax',commutativity_addition) ).

cnf(existence_of_identity_addition,axiom,
    ( equalish(add(additive_identity,X1),X1)
    | ~ defined(X1) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/FLD001-0.ax',existence_of_identity_addition) ).

cnf(existence_of_inverse_addition,axiom,
    ( equalish(add(X1,additive_inverse(X1)),additive_identity)
    | ~ defined(X1) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/FLD001-0.ax',existence_of_inverse_addition) ).

cnf(well_definedness_of_addition,axiom,
    ( defined(add(X1,X2))
    | ~ defined(X1)
    | ~ defined(X2) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/FLD001-0.ax',well_definedness_of_addition) ).

cnf(symmetry_of_equality,axiom,
    ( equalish(X1,X2)
    | ~ equalish(X2,X1) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/FLD001-0.ax',symmetry_of_equality) ).

cnf(well_definedness_of_additive_inverse,axiom,
    ( defined(additive_inverse(X1))
    | ~ defined(X1) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/FLD001-0.ax',well_definedness_of_additive_inverse) ).

cnf(b_is_defined,hypothesis,
    defined(b),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',b_is_defined) ).

cnf(a_not_equal_to_b_5,negated_conjecture,
    ~ equalish(a,b),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',a_not_equal_to_b_5) ).

cnf(c_0_14,axiom,
    ( equalish(add(X1,X2),add(X3,X2))
    | ~ defined(X2)
    | ~ equalish(X1,X3) ),
    compatibility_of_equality_and_addition ).

cnf(c_0_15,negated_conjecture,
    equalish(add(a,c),add(b,c)),
    add_equals_add_4 ).

cnf(c_0_16,axiom,
    ( equalish(X1,X2)
    | ~ equalish(X1,X3)
    | ~ equalish(X3,X2) ),
    transitivity_of_equality ).

cnf(c_0_17,negated_conjecture,
    ( equalish(add(add(a,c),X1),add(add(b,c),X1))
    | ~ defined(X1) ),
    inference(spm,[status(thm)],[c_0_14,c_0_15]) ).

cnf(c_0_18,negated_conjecture,
    ( equalish(X1,add(add(b,c),X2))
    | ~ defined(X2)
    | ~ equalish(X1,add(add(a,c),X2)) ),
    inference(spm,[status(thm)],[c_0_16,c_0_17]) ).

cnf(c_0_19,axiom,
    ( equalish(add(X1,add(X2,X3)),add(add(X1,X2),X3))
    | ~ defined(X1)
    | ~ defined(X2)
    | ~ defined(X3) ),
    associativity_addition ).

cnf(c_0_20,hypothesis,
    defined(c),
    c_is_defined ).

cnf(c_0_21,hypothesis,
    defined(a),
    a_is_defined ).

cnf(c_0_22,negated_conjecture,
    ( equalish(add(a,add(c,X1)),add(add(b,c),X1))
    | ~ defined(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_18,c_0_19]),c_0_20]),c_0_21])]) ).

cnf(c_0_23,negated_conjecture,
    ( equalish(X1,add(add(b,c),X2))
    | ~ defined(X2)
    | ~ equalish(X1,add(a,add(c,X2))) ),
    inference(spm,[status(thm)],[c_0_16,c_0_22]) ).

cnf(c_0_24,axiom,
    ( equalish(add(X1,X2),add(X2,X1))
    | ~ defined(X1)
    | ~ defined(X2) ),
    commutativity_addition ).

cnf(c_0_25,axiom,
    ( equalish(add(additive_identity,X1),X1)
    | ~ defined(X1) ),
    existence_of_identity_addition ).

cnf(c_0_26,axiom,
    ( equalish(add(X1,additive_inverse(X1)),additive_identity)
    | ~ defined(X1) ),
    existence_of_inverse_addition ).

cnf(c_0_27,negated_conjecture,
    ( equalish(add(add(c,X1),a),add(add(b,c),X1))
    | ~ defined(add(c,X1))
    | ~ defined(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_23,c_0_24]),c_0_21])]) ).

cnf(c_0_28,axiom,
    ( defined(add(X1,X2))
    | ~ defined(X1)
    | ~ defined(X2) ),
    well_definedness_of_addition ).

cnf(c_0_29,plain,
    ( equalish(X1,X2)
    | ~ defined(X2)
    | ~ equalish(X1,add(additive_identity,X2)) ),
    inference(spm,[status(thm)],[c_0_16,c_0_25]) ).

cnf(c_0_30,plain,
    ( equalish(add(add(X1,additive_inverse(X1)),X2),add(additive_identity,X2))
    | ~ defined(X2)
    | ~ defined(X1) ),
    inference(spm,[status(thm)],[c_0_14,c_0_26]) ).

cnf(c_0_31,negated_conjecture,
    ( equalish(add(add(c,X1),a),add(add(b,c),X1))
    | ~ defined(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_27,c_0_28]),c_0_20])]) ).

cnf(c_0_32,axiom,
    ( equalish(X1,X2)
    | ~ equalish(X2,X1) ),
    symmetry_of_equality ).

cnf(c_0_33,plain,
    ( equalish(add(add(X1,additive_inverse(X1)),X2),X2)
    | ~ defined(X2)
    | ~ defined(X1) ),
    inference(spm,[status(thm)],[c_0_29,c_0_30]) ).

cnf(c_0_34,negated_conjecture,
    ( equalish(X1,add(add(b,c),X2))
    | ~ defined(X2)
    | ~ equalish(X1,add(add(c,X2),a)) ),
    inference(spm,[status(thm)],[c_0_16,c_0_31]) ).

cnf(c_0_35,plain,
    ( equalish(X1,add(add(X2,additive_inverse(X2)),X1))
    | ~ defined(X1)
    | ~ defined(X2) ),
    inference(spm,[status(thm)],[c_0_32,c_0_33]) ).

cnf(c_0_36,negated_conjecture,
    ( equalish(a,add(add(b,c),additive_inverse(c)))
    | ~ defined(additive_inverse(c)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_34,c_0_35]),c_0_21]),c_0_20])]) ).

cnf(c_0_37,axiom,
    ( defined(additive_inverse(X1))
    | ~ defined(X1) ),
    well_definedness_of_additive_inverse ).

cnf(c_0_38,negated_conjecture,
    equalish(a,add(add(b,c),additive_inverse(c))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_36,c_0_37]),c_0_20])]) ).

cnf(c_0_39,negated_conjecture,
    equalish(add(add(b,c),additive_inverse(c)),a),
    inference(spm,[status(thm)],[c_0_32,c_0_38]) ).

cnf(c_0_40,plain,
    ( equalish(X1,add(add(X2,X3),X4))
    | ~ defined(X4)
    | ~ defined(X3)
    | ~ defined(X2)
    | ~ equalish(X1,add(X2,add(X3,X4))) ),
    inference(spm,[status(thm)],[c_0_16,c_0_19]) ).

cnf(c_0_41,negated_conjecture,
    ( equalish(X1,a)
    | ~ equalish(X1,add(add(b,c),additive_inverse(c))) ),
    inference(spm,[status(thm)],[c_0_16,c_0_39]) ).

cnf(c_0_42,plain,
    ( equalish(add(add(X1,X2),X3),add(add(X3,X1),X2))
    | ~ defined(X2)
    | ~ defined(X1)
    | ~ defined(X3) ),
    inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_40,c_0_24]),c_0_28]) ).

cnf(c_0_43,hypothesis,
    defined(b),
    b_is_defined ).

cnf(c_0_44,negated_conjecture,
    ( equalish(add(add(c,additive_inverse(c)),b),a)
    | ~ defined(additive_inverse(c)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_41,c_0_42]),c_0_20]),c_0_43])]) ).

cnf(c_0_45,negated_conjecture,
    equalish(add(add(c,additive_inverse(c)),b),a),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_44,c_0_37]),c_0_20])]) ).

cnf(c_0_46,negated_conjecture,
    ( equalish(X1,a)
    | ~ equalish(X1,add(add(c,additive_inverse(c)),b)) ),
    inference(spm,[status(thm)],[c_0_16,c_0_45]) ).

cnf(c_0_47,negated_conjecture,
    equalish(b,a),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_46,c_0_35]),c_0_43]),c_0_20])]) ).

cnf(c_0_48,negated_conjecture,
    ~ equalish(a,b),
    a_not_equal_to_b_5 ).

cnf(c_0_49,negated_conjecture,
    $false,
    inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_32,c_0_47]),c_0_48]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem    : FLD022-1 : TPTP v8.1.2. Bugfixed v2.1.0.
% 0.00/0.13  % Command    : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s
% 0.13/0.34  % Computer : n010.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit   : 300
% 0.13/0.34  % WCLimit    : 300
% 0.13/0.34  % DateTime   : Sun Aug 27 23:39:34 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 0.20/0.60  start to proof: theBenchmark
% 5.03/5.11  % Version  : CSE_E---1.5
% 5.03/5.11  % Problem  : theBenchmark.p
% 5.03/5.11  % Proof found
% 5.03/5.11  % SZS status Theorem for theBenchmark.p
% 5.03/5.11  % SZS output start Proof
% See solution above
% 5.03/5.12  % Total time : 4.509000 s
% 5.03/5.12  % SZS output end Proof
% 5.03/5.12  % Total time : 4.513000 s
%------------------------------------------------------------------------------