TSTP Solution File: FLD014-1 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : FLD014-1 : TPTP v8.1.2. Bugfixed v2.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox/solver/bin/mcs_scs.jar %d %s

% Computer : n022.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Aug 30 22:27:17 EDT 2023

% Result   : Unsatisfiable 90.05s 90.09s
% Output   : CNFRefutation 90.05s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   15
%            Number of leaves      :   26
% Syntax   : Number of formulae    :   87 (  28 unt;  11 typ;   0 def)
%            Number of atoms       :  151 (   0 equ)
%            Maximal formula atoms :    5 (   1 avg)
%            Number of connectives :  152 (  77   ~;  75   |;   0   &)
%                                         (   0 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    6 (   3 avg)
%            Maximal term depth    :    4 (   2 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :   11 (   7   >;   4   *;   0   +;   0  <<)
%            Number of predicates  :    4 (   3 usr;   1 prp; 0-2 aty)
%            Number of functors    :    8 (   8 usr;   4 con; 0-2 aty)
%            Number of variables   :   78 (   0 sgn;   0   !;   0   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    add: ( $i * $i ) > $i ).

tff(decl_23,type,
    equalish: ( $i * $i ) > $o ).

tff(decl_24,type,
    defined: $i > $o ).

tff(decl_25,type,
    additive_identity: $i ).

tff(decl_26,type,
    additive_inverse: $i > $i ).

tff(decl_27,type,
    multiply: ( $i * $i ) > $i ).

tff(decl_28,type,
    multiplicative_identity: $i ).

tff(decl_29,type,
    multiplicative_inverse: $i > $i ).

tff(decl_30,type,
    less_or_equal: ( $i * $i ) > $o ).

tff(decl_31,type,
    a: $i ).

tff(decl_32,type,
    b: $i ).

cnf(existence_of_identity_addition,axiom,
    ( equalish(add(additive_identity,X1),X1)
    | ~ defined(X1) ),
    file('/export/starexec/sandbox/benchmark/Axioms/FLD001-0.ax',existence_of_identity_addition) ).

cnf(well_definedness_of_additive_inverse,axiom,
    ( defined(additive_inverse(X1))
    | ~ defined(X1) ),
    file('/export/starexec/sandbox/benchmark/Axioms/FLD001-0.ax',well_definedness_of_additive_inverse) ).

cnf(symmetry_of_equality,axiom,
    ( equalish(X1,X2)
    | ~ equalish(X2,X1) ),
    file('/export/starexec/sandbox/benchmark/Axioms/FLD001-0.ax',symmetry_of_equality) ).

cnf(reflexivity_of_equality,axiom,
    ( equalish(X1,X1)
    | ~ defined(X1) ),
    file('/export/starexec/sandbox/benchmark/Axioms/FLD001-0.ax',reflexivity_of_equality) ).

cnf(commutativity_addition,axiom,
    ( equalish(add(X1,X2),add(X2,X1))
    | ~ defined(X1)
    | ~ defined(X2) ),
    file('/export/starexec/sandbox/benchmark/Axioms/FLD001-0.ax',commutativity_addition) ).

cnf(transitivity_of_equality,axiom,
    ( equalish(X1,X2)
    | ~ equalish(X1,X3)
    | ~ equalish(X3,X2) ),
    file('/export/starexec/sandbox/benchmark/Axioms/FLD001-0.ax',transitivity_of_equality) ).

cnf(b_is_defined,hypothesis,
    defined(b),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',b_is_defined) ).

cnf(a_is_defined,hypothesis,
    defined(a),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',a_is_defined) ).

cnf(well_definedness_of_additive_identity,axiom,
    defined(additive_identity),
    file('/export/starexec/sandbox/benchmark/Axioms/FLD001-0.ax',well_definedness_of_additive_identity) ).

cnf(existence_of_inverse_addition,axiom,
    ( equalish(add(X1,additive_inverse(X1)),additive_identity)
    | ~ defined(X1) ),
    file('/export/starexec/sandbox/benchmark/Axioms/FLD001-0.ax',existence_of_inverse_addition) ).

cnf(compatibility_of_equality_and_addition,axiom,
    ( equalish(add(X1,X2),add(X3,X2))
    | ~ defined(X2)
    | ~ equalish(X1,X3) ),
    file('/export/starexec/sandbox/benchmark/Axioms/FLD001-0.ax',compatibility_of_equality_and_addition) ).

cnf(a_equals_b_3,negated_conjecture,
    equalish(a,b),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',a_equals_b_3) ).

cnf(associativity_addition,axiom,
    ( equalish(add(X1,add(X2,X3)),add(add(X1,X2),X3))
    | ~ defined(X1)
    | ~ defined(X2)
    | ~ defined(X3) ),
    file('/export/starexec/sandbox/benchmark/Axioms/FLD001-0.ax',associativity_addition) ).

cnf(well_definedness_of_addition,axiom,
    ( defined(add(X1,X2))
    | ~ defined(X1)
    | ~ defined(X2) ),
    file('/export/starexec/sandbox/benchmark/Axioms/FLD001-0.ax',well_definedness_of_addition) ).

cnf(additive_inverse_not_equal_to_additive_inverse_4,negated_conjecture,
    ~ equalish(additive_inverse(a),additive_inverse(b)),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',additive_inverse_not_equal_to_additive_inverse_4) ).

cnf(c_0_15,axiom,
    ( equalish(add(additive_identity,X1),X1)
    | ~ defined(X1) ),
    existence_of_identity_addition ).

cnf(c_0_16,axiom,
    ( defined(additive_inverse(X1))
    | ~ defined(X1) ),
    well_definedness_of_additive_inverse ).

cnf(c_0_17,axiom,
    ( equalish(X1,X2)
    | ~ equalish(X2,X1) ),
    symmetry_of_equality ).

cnf(c_0_18,plain,
    ( equalish(add(additive_identity,additive_inverse(X1)),additive_inverse(X1))
    | ~ defined(X1) ),
    inference(spm,[status(thm)],[c_0_15,c_0_16]) ).

cnf(c_0_19,axiom,
    ( equalish(X1,X1)
    | ~ defined(X1) ),
    reflexivity_of_equality ).

cnf(c_0_20,axiom,
    ( equalish(add(X1,X2),add(X2,X1))
    | ~ defined(X1)
    | ~ defined(X2) ),
    commutativity_addition ).

cnf(c_0_21,axiom,
    ( equalish(X1,X2)
    | ~ equalish(X1,X3)
    | ~ equalish(X3,X2) ),
    transitivity_of_equality ).

cnf(c_0_22,plain,
    ( equalish(additive_inverse(X1),add(additive_identity,additive_inverse(X1)))
    | ~ defined(X1) ),
    inference(spm,[status(thm)],[c_0_17,c_0_18]) ).

cnf(c_0_23,plain,
    ( equalish(additive_inverse(X1),additive_inverse(X1))
    | ~ defined(X1) ),
    inference(spm,[status(thm)],[c_0_19,c_0_16]) ).

cnf(c_0_24,hypothesis,
    defined(b),
    b_is_defined ).

cnf(c_0_25,plain,
    ( equalish(add(X1,additive_inverse(X2)),add(additive_inverse(X2),X1))
    | ~ defined(X1)
    | ~ defined(X2) ),
    inference(spm,[status(thm)],[c_0_20,c_0_16]) ).

cnf(c_0_26,plain,
    ( equalish(X1,add(additive_identity,additive_inverse(X2)))
    | ~ defined(X2)
    | ~ equalish(X1,additive_inverse(X2)) ),
    inference(spm,[status(thm)],[c_0_21,c_0_22]) ).

cnf(c_0_27,hypothesis,
    equalish(additive_inverse(b),additive_inverse(b)),
    inference(spm,[status(thm)],[c_0_23,c_0_24]) ).

cnf(c_0_28,hypothesis,
    defined(a),
    a_is_defined ).

cnf(c_0_29,plain,
    ( equalish(X1,add(additive_inverse(X2),X3))
    | ~ defined(X3)
    | ~ defined(X2)
    | ~ equalish(X1,add(X3,additive_inverse(X2))) ),
    inference(spm,[status(thm)],[c_0_21,c_0_25]) ).

cnf(c_0_30,hypothesis,
    equalish(additive_inverse(b),add(additive_identity,additive_inverse(b))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_26,c_0_27]),c_0_24])]) ).

cnf(c_0_31,axiom,
    defined(additive_identity),
    well_definedness_of_additive_identity ).

cnf(c_0_32,axiom,
    ( equalish(add(X1,additive_inverse(X1)),additive_identity)
    | ~ defined(X1) ),
    existence_of_inverse_addition ).

cnf(c_0_33,hypothesis,
    equalish(additive_inverse(a),additive_inverse(a)),
    inference(spm,[status(thm)],[c_0_23,c_0_28]) ).

cnf(c_0_34,hypothesis,
    equalish(additive_inverse(b),add(additive_inverse(b),additive_identity)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_29,c_0_30]),c_0_31]),c_0_24])]) ).

cnf(c_0_35,axiom,
    ( equalish(add(X1,X2),add(X3,X2))
    | ~ defined(X2)
    | ~ equalish(X1,X3) ),
    compatibility_of_equality_and_addition ).

cnf(c_0_36,hypothesis,
    equalish(add(a,additive_inverse(a)),additive_identity),
    inference(spm,[status(thm)],[c_0_32,c_0_28]) ).

cnf(c_0_37,negated_conjecture,
    equalish(a,b),
    a_equals_b_3 ).

cnf(c_0_38,hypothesis,
    equalish(additive_inverse(a),add(additive_identity,additive_inverse(a))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_26,c_0_33]),c_0_28])]) ).

cnf(c_0_39,hypothesis,
    equalish(add(b,additive_inverse(b)),additive_identity),
    inference(spm,[status(thm)],[c_0_32,c_0_24]) ).

cnf(c_0_40,axiom,
    ( equalish(add(X1,add(X2,X3)),add(add(X1,X2),X3))
    | ~ defined(X1)
    | ~ defined(X2)
    | ~ defined(X3) ),
    associativity_addition ).

cnf(c_0_41,hypothesis,
    equalish(add(additive_inverse(b),additive_identity),additive_inverse(b)),
    inference(spm,[status(thm)],[c_0_17,c_0_34]) ).

cnf(c_0_42,hypothesis,
    ( equalish(add(add(a,additive_inverse(a)),X1),add(additive_identity,X1))
    | ~ defined(X1) ),
    inference(spm,[status(thm)],[c_0_35,c_0_36]) ).

cnf(c_0_43,negated_conjecture,
    ( equalish(add(a,X1),add(b,X1))
    | ~ defined(X1) ),
    inference(spm,[status(thm)],[c_0_35,c_0_37]) ).

cnf(c_0_44,hypothesis,
    equalish(additive_inverse(a),add(additive_inverse(a),additive_identity)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_29,c_0_38]),c_0_31]),c_0_28])]) ).

cnf(c_0_45,hypothesis,
    equalish(additive_identity,add(b,additive_inverse(b))),
    inference(spm,[status(thm)],[c_0_17,c_0_39]) ).

cnf(c_0_46,plain,
    ( equalish(X1,add(add(X2,X3),X4))
    | ~ defined(X4)
    | ~ defined(X3)
    | ~ defined(X2)
    | ~ equalish(X1,add(X2,add(X3,X4))) ),
    inference(spm,[status(thm)],[c_0_21,c_0_40]) ).

cnf(c_0_47,axiom,
    ( defined(add(X1,X2))
    | ~ defined(X1)
    | ~ defined(X2) ),
    well_definedness_of_addition ).

cnf(c_0_48,hypothesis,
    ( equalish(X1,additive_inverse(b))
    | ~ equalish(X1,add(additive_inverse(b),additive_identity)) ),
    inference(spm,[status(thm)],[c_0_21,c_0_41]) ).

cnf(c_0_49,hypothesis,
    ( equalish(add(add(a,additive_inverse(a)),additive_inverse(X1)),add(additive_inverse(X1),additive_identity))
    | ~ defined(X1) ),
    inference(csr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_29,c_0_42]),c_0_31])]),c_0_16]) ).

cnf(c_0_50,hypothesis,
    ( equalish(X1,additive_identity)
    | ~ equalish(X1,add(b,additive_inverse(b))) ),
    inference(spm,[status(thm)],[c_0_21,c_0_39]) ).

cnf(c_0_51,negated_conjecture,
    ( equalish(add(a,additive_inverse(X1)),add(b,additive_inverse(X1)))
    | ~ defined(X1) ),
    inference(spm,[status(thm)],[c_0_43,c_0_16]) ).

cnf(c_0_52,hypothesis,
    equalish(add(additive_inverse(a),additive_identity),additive_inverse(a)),
    inference(spm,[status(thm)],[c_0_17,c_0_44]) ).

cnf(c_0_53,hypothesis,
    ( equalish(add(add(b,additive_inverse(b)),X1),add(additive_identity,X1))
    | ~ defined(X1) ),
    inference(spm,[status(thm)],[c_0_35,c_0_39]) ).

cnf(c_0_54,hypothesis,
    ( equalish(X1,add(b,additive_inverse(b)))
    | ~ equalish(X1,additive_identity) ),
    inference(spm,[status(thm)],[c_0_21,c_0_45]) ).

cnf(c_0_55,plain,
    ( equalish(add(add(X1,X2),additive_inverse(X3)),add(add(additive_inverse(X3),X1),X2))
    | ~ defined(X2)
    | ~ defined(X1)
    | ~ defined(X3) ),
    inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_46,c_0_25]),c_0_16]),c_0_47]) ).

cnf(c_0_56,hypothesis,
    equalish(add(add(a,additive_inverse(a)),additive_inverse(b)),additive_inverse(b)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_48,c_0_49]),c_0_24])]) ).

cnf(c_0_57,hypothesis,
    equalish(add(a,additive_inverse(b)),additive_identity),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50,c_0_51]),c_0_24])]) ).

cnf(c_0_58,hypothesis,
    ( equalish(add(X1,a),add(a,X1))
    | ~ defined(X1) ),
    inference(spm,[status(thm)],[c_0_20,c_0_28]) ).

cnf(c_0_59,hypothesis,
    ( equalish(X1,additive_inverse(a))
    | ~ equalish(X1,add(additive_inverse(a),additive_identity)) ),
    inference(spm,[status(thm)],[c_0_21,c_0_52]) ).

cnf(c_0_60,hypothesis,
    ( equalish(add(add(b,additive_inverse(b)),additive_inverse(X1)),add(additive_inverse(X1),additive_identity))
    | ~ defined(X1) ),
    inference(csr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_29,c_0_53]),c_0_31])]),c_0_16]) ).

cnf(c_0_61,hypothesis,
    ( equalish(add(X1,X2),add(add(b,additive_inverse(b)),X2))
    | ~ defined(X2)
    | ~ equalish(X1,additive_identity) ),
    inference(spm,[status(thm)],[c_0_35,c_0_54]) ).

cnf(c_0_62,plain,
    ( equalish(X1,add(add(additive_inverse(X2),X3),X4))
    | ~ defined(X4)
    | ~ defined(X3)
    | ~ defined(X2)
    | ~ equalish(X1,add(add(X3,X4),additive_inverse(X2))) ),
    inference(spm,[status(thm)],[c_0_21,c_0_55]) ).

cnf(c_0_63,hypothesis,
    equalish(additive_inverse(b),add(add(a,additive_inverse(a)),additive_inverse(b))),
    inference(spm,[status(thm)],[c_0_17,c_0_56]) ).

cnf(c_0_64,hypothesis,
    ( equalish(X1,additive_identity)
    | ~ equalish(X1,add(a,additive_inverse(b))) ),
    inference(spm,[status(thm)],[c_0_21,c_0_57]) ).

cnf(c_0_65,hypothesis,
    ( equalish(add(additive_inverse(X1),a),add(a,additive_inverse(X1)))
    | ~ defined(X1) ),
    inference(spm,[status(thm)],[c_0_58,c_0_16]) ).

cnf(c_0_66,hypothesis,
    equalish(add(add(b,additive_inverse(b)),additive_inverse(a)),additive_inverse(a)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_59,c_0_60]),c_0_28])]) ).

cnf(c_0_67,hypothesis,
    ( equalish(X1,add(add(b,additive_inverse(b)),X2))
    | ~ defined(X2)
    | ~ equalish(X1,add(X3,X2))
    | ~ equalish(X3,additive_identity) ),
    inference(spm,[status(thm)],[c_0_21,c_0_61]) ).

cnf(c_0_68,hypothesis,
    ( equalish(additive_inverse(b),add(add(additive_inverse(b),a),additive_inverse(a)))
    | ~ defined(additive_inverse(a)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_62,c_0_63]),c_0_28]),c_0_24])]) ).

cnf(c_0_69,hypothesis,
    equalish(add(additive_inverse(b),a),additive_identity),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_64,c_0_65]),c_0_24])]) ).

cnf(c_0_70,hypothesis,
    ( equalish(X1,additive_inverse(a))
    | ~ equalish(X1,add(add(b,additive_inverse(b)),additive_inverse(a))) ),
    inference(spm,[status(thm)],[c_0_21,c_0_66]) ).

cnf(c_0_71,hypothesis,
    ( equalish(additive_inverse(b),add(add(b,additive_inverse(b)),additive_inverse(a)))
    | ~ defined(additive_inverse(a)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_67,c_0_68]),c_0_69])]) ).

cnf(c_0_72,hypothesis,
    ( equalish(additive_inverse(b),additive_inverse(a))
    | ~ defined(additive_inverse(a)) ),
    inference(spm,[status(thm)],[c_0_70,c_0_71]) ).

cnf(c_0_73,hypothesis,
    equalish(additive_inverse(b),additive_inverse(a)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_72,c_0_16]),c_0_28])]) ).

cnf(c_0_74,negated_conjecture,
    ~ equalish(additive_inverse(a),additive_inverse(b)),
    additive_inverse_not_equal_to_additive_inverse_4 ).

cnf(c_0_75,hypothesis,
    $false,
    inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_17,c_0_73]),c_0_74]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem    : FLD014-1 : TPTP v8.1.2. Bugfixed v2.1.0.
% 0.00/0.13  % Command    : java -jar /export/starexec/sandbox/solver/bin/mcs_scs.jar %d %s
% 0.18/0.34  % Computer : n022.cluster.edu
% 0.18/0.34  % Model    : x86_64 x86_64
% 0.18/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.18/0.34  % Memory   : 8042.1875MB
% 0.18/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.18/0.34  % CPULimit   : 300
% 0.18/0.34  % WCLimit    : 300
% 0.18/0.34  % DateTime   : Sun Aug 27 23:49:39 EDT 2023
% 0.18/0.34  % CPUTime  : 
% 0.21/0.57  start to proof: theBenchmark
% 90.05/90.09  % Version  : CSE_E---1.5
% 90.05/90.09  % Problem  : theBenchmark.p
% 90.05/90.09  % Proof found
% 90.05/90.09  % SZS status Theorem for theBenchmark.p
% 90.05/90.09  % SZS output start Proof
% See solution above
% 90.05/90.09  % Total time : 89.508000 s
% 90.05/90.09  % SZS output end Proof
% 90.05/90.09  % Total time : 89.515000 s
%------------------------------------------------------------------------------