TSTP Solution File: CSR142^1 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : CSR142^1 : TPTP v6.1.0. Released v4.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n180.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:21:05 EDT 2014

% Result   : Theorem 0.75s
% Output   : Proof 0.75s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : CSR142^1 : TPTP v6.1.0. Released v4.1.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n180.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 10:07:51 CDT 2014
% % CPUTime  : 0.75 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0xcacf38>, <kernel.Type object at 0x11b9710>) of role type named numbers
% Using role type
% Declaring num:Type
% FOF formula (<kernel.Constant object at 0xdde3f8>, <kernel.DependentProduct object at 0x11b9710>) of role type named husband_THFTYPE_IiioI
% Using role type
% Declaring husband_THFTYPE_IiioI:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0xdde3f8>, <kernel.Single object at 0xcacdd0>) of role type named lChris_THFTYPE_i
% Using role type
% Declaring lChris_THFTYPE_i:fofType
% FOF formula (<kernel.Constant object at 0xdde3f8>, <kernel.Single object at 0xcacdd0>) of role type named lCorina_THFTYPE_i
% Using role type
% Declaring lCorina_THFTYPE_i:fofType
% FOF formula (<kernel.Constant object at 0xcacf38>, <kernel.DependentProduct object at 0x11b9ea8>) of role type named wife_THFTYPE_IiioI
% Using role type
% Declaring wife_THFTYPE_IiioI:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x11b9ea8>, <kernel.DependentProduct object at 0x11b9710>) of role type named inverse_THFTYPE_IIiioIIiioIoI
% Using role type
% Declaring inverse_THFTYPE_IIiioIIiioIoI:((fofType->(fofType->Prop))->((fofType->(fofType->Prop))->Prop))
% FOF formula ((inverse_THFTYPE_IIiioIIiioIoI husband_THFTYPE_IiioI) wife_THFTYPE_IiioI) of role axiom named ax
% A new axiom: ((inverse_THFTYPE_IIiioIIiioIoI husband_THFTYPE_IiioI) wife_THFTYPE_IiioI)
% FOF formula (forall (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))), (((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2)->(forall (INST1:fofType) (INST2:fofType), ((iff ((REL1 INST1) INST2)) ((REL2 INST2) INST1))))) of role axiom named ax_001
% A new axiom: (forall (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))), (((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2)->(forall (INST1:fofType) (INST2:fofType), ((iff ((REL1 INST1) INST2)) ((REL2 INST2) INST1)))))
% FOF formula ((wife_THFTYPE_IiioI lCorina_THFTYPE_i) lChris_THFTYPE_i) of role axiom named ax_002
% A new axiom: ((wife_THFTYPE_IiioI lCorina_THFTYPE_i) lChris_THFTYPE_i)
% FOF formula ((ex fofType) (fun (X:fofType)=> ((husband_THFTYPE_IiioI X) lCorina_THFTYPE_i))) of role conjecture named con
% Conjecture to prove = ((ex fofType) (fun (X:fofType)=> ((husband_THFTYPE_IiioI X) lCorina_THFTYPE_i))):Prop
% Parameter num_DUMMY:num.
% We need to prove ['((ex fofType) (fun (X:fofType)=> ((husband_THFTYPE_IiioI X) lCorina_THFTYPE_i)))']
% Parameter num:Type.
% Parameter fofType:Type.
% Parameter husband_THFTYPE_IiioI:(fofType->(fofType->Prop)).
% Parameter lChris_THFTYPE_i:fofType.
% Parameter lCorina_THFTYPE_i:fofType.
% Parameter wife_THFTYPE_IiioI:(fofType->(fofType->Prop)).
% Parameter inverse_THFTYPE_IIiioIIiioIoI:((fofType->(fofType->Prop))->((fofType->(fofType->Prop))->Prop)).
% Axiom ax:((inverse_THFTYPE_IIiioIIiioIoI husband_THFTYPE_IiioI) wife_THFTYPE_IiioI).
% Axiom ax_001:(forall (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))), (((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2)->(forall (INST1:fofType) (INST2:fofType), ((iff ((REL1 INST1) INST2)) ((REL2 INST2) INST1))))).
% Axiom ax_002:((wife_THFTYPE_IiioI lCorina_THFTYPE_i) lChris_THFTYPE_i).
% Trying to prove ((ex fofType) (fun (X:fofType)=> ((husband_THFTYPE_IiioI X) lCorina_THFTYPE_i)))
% Found iff_sym:=(fun (A:Prop) (B:Prop) (H:((iff A) B))=> ((((conj (B->A)) (A->B)) (((proj2 (A->B)) (B->A)) H)) (((proj1 (A->B)) (B->A)) H))):(forall (A:Prop) (B:Prop), (((iff A) B)->((iff B) A)))
% Found iff_sym as proof of (forall (A:Prop) (B:Prop), (((iff A) B)->((iff B) A)))
% Found ax_002:((wife_THFTYPE_IiioI lCorina_THFTYPE_i) lChris_THFTYPE_i)
% Found ax_002 as proof of ((wife_THFTYPE_IiioI lCorina_THFTYPE_i) lChris_THFTYPE_i)
% Found iff_trans:=(fun (A:Prop) (B:Prop) (C:Prop) (AB:((iff A) B)) (BC:((iff B) C))=> ((((conj (A->C)) (C->A)) (fun (x:A)=> ((((proj1 (B->C)) (C->B)) BC) ((((proj1 (A->B)) (B->A)) AB) x)))) (fun (x:C)=> ((((proj2 (A->B)) (B->A)) AB) ((((proj2 (B->C)) (C->B)) BC) x))))):(forall (A:Prop) (B:Prop) (C:Prop), (((iff A) B)->(((iff B) C)->((iff A) C))))
% Found iff_trans as proof of (forall (A:Prop) (B:Prop) (C:Prop), (((iff A) B)->(((iff B) C)->((iff A) C))))
% Found ax_001:(forall (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))), (((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2)->(forall (INST1:fofType) (INST2:fofType), ((iff ((REL1 INST1) INST2)) ((REL2 INST2) INST1)))))
% Found ax_001 as proof of (forall (REL2:(fofType->(fofType->Prop))) (REL10:(fofType->(fofType->Prop))), (((inverse_THFTYPE_IIiioIIiioIoI REL10) REL2)->(forall (INST1:fofType) (INST2:fofType), ((iff ((REL10 INST1) INST2)) ((REL2 INST2) INST1)))))
% Found iff_refl:=(fun (A:Prop)=> ((((conj (A->A)) (A->A)) (fun (H:A)=> H)) (fun (H:A)=> H))):(forall (P:Prop), ((iff P) P))
% Found iff_refl as proof of (forall (P:Prop), ((iff P) P))
% Found ax:((inverse_THFTYPE_IIiioIIiioIoI husband_THFTYPE_IiioI) wife_THFTYPE_IiioI)
% Found ax as proof of ((inverse_THFTYPE_IIiioIIiioIoI husband_THFTYPE_IiioI) wife_THFTYPE_IiioI)
% Found ax_001__proj10:=(ax_001__proj1 husband_THFTYPE_IiioI):(forall (REL1:(fofType->(fofType->Prop))), (((inverse_THFTYPE_IIiioIIiioIoI REL1) husband_THFTYPE_IiioI)->(forall (INST1:fofType) (INST2:fofType), (((REL1 INST1) INST2)->((husband_THFTYPE_IiioI INST2) INST1)))))
% Found ax_001__proj10 as proof of (forall (REL10:(fofType->(fofType->Prop))), (((inverse_THFTYPE_IIiioIIiioIoI REL10) husband_THFTYPE_IiioI)->(forall (INST1:fofType) (INST2:fofType), (((REL10 INST1) INST2)->((husband_THFTYPE_IiioI INST2) INST1)))))
% Found ax:((inverse_THFTYPE_IIiioIIiioIoI husband_THFTYPE_IiioI) wife_THFTYPE_IiioI)
% Instantiate: REL2:=wife_THFTYPE_IiioI:(fofType->(fofType->Prop))
% Found ax as proof of ((inverse_THFTYPE_IIiioIIiioIoI husband_THFTYPE_IiioI) REL2)
% Found ax_002:((wife_THFTYPE_IiioI lCorina_THFTYPE_i) lChris_THFTYPE_i)
% Instantiate: x:=lChris_THFTYPE_i:fofType
% Found ax_002 as proof of ((REL2 lCorina_THFTYPE_i) x)
% Found ((ax_001__proj20000 ax) ax_002) as proof of ((husband_THFTYPE_IiioI x) lCorina_THFTYPE_i)
% Found (((ax_001__proj2000 husband_THFTYPE_IiioI) ax) ax_002) as proof of ((husband_THFTYPE_IiioI x) lCorina_THFTYPE_i)
% Found ((((ax_001__proj200 wife_THFTYPE_IiioI) husband_THFTYPE_IiioI) ax) ax_002) as proof of ((husband_THFTYPE_IiioI x) lCorina_THFTYPE_i)
% Found (((((fun (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))) (x0:((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2))=> ((((ax_001__proj20 REL2) REL1) x0) lCorina_THFTYPE_i)) wife_THFTYPE_IiioI) husband_THFTYPE_IiioI) ax) ax_002) as proof of ((husband_THFTYPE_IiioI x) lCorina_THFTYPE_i)
% Found (((((fun (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))) (x0:((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2))=> (((((fun (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))) (x0:((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2))=> ((((ax_001__proj2 REL2) REL1) x0) x)) REL2) REL1) x0) lCorina_THFTYPE_i)) wife_THFTYPE_IiioI) husband_THFTYPE_IiioI) ax) ax_002) as proof of ((husband_THFTYPE_IiioI x) lCorina_THFTYPE_i)
% Found (((((fun (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))) (x0:((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2))=> (((((fun (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))) (x0:((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2))=> ((((ax_001__proj2 REL2) REL1) x0) x)) REL2) REL1) x0) lCorina_THFTYPE_i)) wife_THFTYPE_IiioI) husband_THFTYPE_IiioI) ax) ax_002) as proof of ((husband_THFTYPE_IiioI x) lCorina_THFTYPE_i)
% Found (ex_intro000 (((((fun (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))) (x0:((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2))=> (((((fun (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))) (x0:((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2))=> ((((ax_001__proj2 REL2) REL1) x0) x)) REL2) REL1) x0) lCorina_THFTYPE_i)) wife_THFTYPE_IiioI) husband_THFTYPE_IiioI) ax) ax_002)) as proof of ((ex fofType) (fun (X:fofType)=> ((husband_THFTYPE_IiioI X) lCorina_THFTYPE_i)))
% Found ((ex_intro00 lChris_THFTYPE_i) (((((fun (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))) (x0:((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2))=> (((((fun (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))) (x0:((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2))=> ((((ax_001__proj2 REL2) REL1) x0) lChris_THFTYPE_i)) REL2) REL1) x0) lCorina_THFTYPE_i)) wife_THFTYPE_IiioI) husband_THFTYPE_IiioI) ax) ax_002)) as proof of ((ex fofType) (fun (X:fofType)=> ((husband_THFTYPE_IiioI X) lCorina_THFTYPE_i)))
% Found (((ex_intro0 (fun (X:fofType)=> ((husband_THFTYPE_IiioI X) lCorina_THFTYPE_i))) lChris_THFTYPE_i) (((((fun (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))) (x0:((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2))=> (((((fun (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))) (x0:((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2))=> ((((ax_001__proj2 REL2) REL1) x0) lChris_THFTYPE_i)) REL2) REL1) x0) lCorina_THFTYPE_i)) wife_THFTYPE_IiioI) husband_THFTYPE_IiioI) ax) ax_002)) as proof of ((ex fofType) (fun (X:fofType)=> ((husband_THFTYPE_IiioI X) lCorina_THFTYPE_i)))
% Found ((((ex_intro fofType) (fun (X:fofType)=> ((husband_THFTYPE_IiioI X) lCorina_THFTYPE_i))) lChris_THFTYPE_i) (((((fun (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))) (x0:((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2))=> (((((fun (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))) (x0:((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2))=> ((((ax_001__proj2 REL2) REL1) x0) lChris_THFTYPE_i)) REL2) REL1) x0) lCorina_THFTYPE_i)) wife_THFTYPE_IiioI) husband_THFTYPE_IiioI) ax) ax_002)) as proof of ((ex fofType) (fun (X:fofType)=> ((husband_THFTYPE_IiioI X) lCorina_THFTYPE_i)))
% Found ((((ex_intro fofType) (fun (X:fofType)=> ((husband_THFTYPE_IiioI X) lCorina_THFTYPE_i))) lChris_THFTYPE_i) (((((fun (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))) (x0:((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2))=> (((((fun (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))) (x0:((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2))=> ((((ax_001__proj2 REL2) REL1) x0) lChris_THFTYPE_i)) REL2) REL1) x0) lCorina_THFTYPE_i)) wife_THFTYPE_IiioI) husband_THFTYPE_IiioI) ax) ax_002)) as proof of ((ex fofType) (fun (X:fofType)=> ((husband_THFTYPE_IiioI X) lCorina_THFTYPE_i)))
% Got proof ((((ex_intro fofType) (fun (X:fofType)=> ((husband_THFTYPE_IiioI X) lCorina_THFTYPE_i))) lChris_THFTYPE_i) (((((fun (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))) (x0:((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2))=> (((((fun (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))) (x0:((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2))=> (((((fun (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))) (x:((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2)) (INST1:fofType) (INST2:fofType)=> (((proj2 (((REL1 INST1) INST2)->((REL2 INST2) INST1))) (((REL2 INST2) INST1)->((REL1 INST1) INST2))) (((((ax_001 REL2) REL1) x) INST1) INST2))) REL2) REL1) x0) lChris_THFTYPE_i)) REL2) REL1) x0) lCorina_THFTYPE_i)) wife_THFTYPE_IiioI) husband_THFTYPE_IiioI) ax) ax_002))
% Time elapsed = 0.417484s
% node=105 cost=1380.000000 depth=11
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% ((((ex_intro fofType) (fun (X:fofType)=> ((husband_THFTYPE_IiioI X) lCorina_THFTYPE_i))) lChris_THFTYPE_i) (((((fun (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))) (x0:((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2))=> (((((fun (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))) (x0:((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2))=> (((((fun (REL2:(fofType->(fofType->Prop))) (REL1:(fofType->(fofType->Prop))) (x:((inverse_THFTYPE_IIiioIIiioIoI REL1) REL2)) (INST1:fofType) (INST2:fofType)=> (((proj2 (((REL1 INST1) INST2)->((REL2 INST2) INST1))) (((REL2 INST2) INST1)->((REL1 INST1) INST2))) (((((ax_001 REL2) REL1) x) INST1) INST2))) REL2) REL1) x0) lChris_THFTYPE_i)) REL2) REL1) x0) lCorina_THFTYPE_i)) wife_THFTYPE_IiioI) husband_THFTYPE_IiioI) ax) ax_002))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------