TSTP Solution File: CSR048+2 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : CSR048+2 : TPTP v8.1.2. Released v3.4.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n009.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Aug 30 21:41:22 EDT 2023

% Result   : Theorem 45.86s 6.17s
% Output   : Proof 45.86s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : CSR048+2 : TPTP v8.1.2. Released v3.4.0.
% 0.03/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.12/0.34  % Computer : n009.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 300
% 0.12/0.34  % DateTime : Mon Aug 28 07:37:05 EDT 2023
% 0.12/0.34  % CPUTime  : 
% 45.86/6.17  Command-line arguments: --lhs-weight 9 --flip-ordering --complete-subsets --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 45.86/6.17  
% 45.86/6.17  % SZS status Theorem
% 45.86/6.17  
% 45.86/6.17  % SZS output start Proof
% 45.86/6.17  Take the following subset of the input axioms:
% 45.86/6.17    fof(ax1_1123, axiom, ![SPECMT, GENLMT]: ((mtvisible(SPECMT) & genlmt(SPECMT, GENLMT)) => mtvisible(GENLMT))).
% 45.86/6.17    fof(ax1_140, axiom, genlmt(c_tptpgeo_spindlecollectormt, c_tptpgeo_member1_mt)).
% 45.86/6.17    fof(ax1_153, axiom, ![OBJ]: ~(tptpcol_1_1(OBJ) & tptpcol_1_65536(OBJ))).
% 45.86/6.17    fof(ax1_167, axiom, ![OBJ2]: ~(individual(OBJ2) & setorcollection(OBJ2))).
% 45.86/6.17    fof(ax1_207, axiom, mtvisible(c_tptpgeo_member1_mt) => borderson(c_georegion_l4_x45_y9, c_georegion_l4_x45_y10)).
% 45.86/6.17    fof(ax1_289, axiom, ![OBJ2]: ~(collection(OBJ2) & individual(OBJ2))).
% 45.86/6.17    fof(ax1_3, axiom, ![OBJ2]: ~(intangible(OBJ2) & partiallytangible(OBJ2))).
% 45.86/6.17    fof(ax1_363, axiom, ![COL1, COL2, OBJ2]: ~(isa(OBJ2, COL1) & (isa(OBJ2, COL2) & disjointwith(COL1, COL2)))).
% 45.86/6.17    fof(ax1_488, axiom, ![OBJ2]: ~(tptpcol_3_98305(OBJ2) & tptpcol_3_114688(OBJ2))).
% 45.86/6.17    fof(ax1_521, axiom, ![X]: ~affiliatedwith(X, X)).
% 45.86/6.17    fof(ax1_698, axiom, ![X2]: ~objectfoundinlocation(X2, X2)).
% 45.86/6.17    fof(ax1_901, axiom, ![X2]: ~borderson(X2, X2)).
% 45.86/6.17    fof(query98, conjecture, ?[ARG2]: (mtvisible(c_tptpgeo_spindlecollectormt) => borderson(c_georegion_l4_x45_y9, ARG2))).
% 45.86/6.17  
% 45.86/6.17  Now clausify the problem and encode Horn clauses using encoding 3 of
% 45.86/6.17  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 45.86/6.17  We repeatedly replace C & s=t => u=v by the two clauses:
% 45.86/6.17    fresh(y, y, x1...xn) = u
% 45.86/6.17    C => fresh(s, t, x1...xn) = v
% 45.86/6.17  where fresh is a fresh function symbol and x1..xn are the free
% 45.86/6.17  variables of u and v.
% 45.86/6.17  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 45.86/6.17  input problem has no model of domain size 1).
% 45.86/6.17  
% 45.86/6.17  The encoding turns the above axioms into the following unit equations and goals:
% 45.86/6.17  
% 45.86/6.17  Axiom 1 (query98): mtvisible(c_tptpgeo_spindlecollectormt) = true2.
% 45.86/6.17  Axiom 2 (ax1_140): genlmt(c_tptpgeo_spindlecollectormt, c_tptpgeo_member1_mt) = true2.
% 45.86/6.17  Axiom 3 (ax1_207): fresh626(X, X) = true2.
% 45.86/6.17  Axiom 4 (ax1_1123): fresh680(X, X, Y) = true2.
% 45.86/6.17  Axiom 5 (ax1_207): fresh626(mtvisible(c_tptpgeo_member1_mt), true2) = borderson(c_georegion_l4_x45_y9, c_georegion_l4_x45_y10).
% 45.86/6.17  Axiom 6 (ax1_1123): fresh681(X, X, Y, Z) = mtvisible(Z).
% 45.86/6.17  Axiom 7 (ax1_1123): fresh681(mtvisible(X), true2, X, Y) = fresh680(genlmt(X, Y), true2, Y).
% 45.86/6.17  
% 45.86/6.17  Goal 1 (query98_1): borderson(c_georegion_l4_x45_y9, X) = true2.
% 45.86/6.17  The goal is true when:
% 45.86/6.17    X = c_georegion_l4_x45_y10
% 45.86/6.17  
% 45.86/6.17  Proof:
% 45.86/6.17    borderson(c_georegion_l4_x45_y9, c_georegion_l4_x45_y10)
% 45.86/6.17  = { by axiom 5 (ax1_207) R->L }
% 45.86/6.17    fresh626(mtvisible(c_tptpgeo_member1_mt), true2)
% 45.86/6.17  = { by axiom 6 (ax1_1123) R->L }
% 45.86/6.17    fresh626(fresh681(true2, true2, c_tptpgeo_spindlecollectormt, c_tptpgeo_member1_mt), true2)
% 45.86/6.17  = { by axiom 1 (query98) R->L }
% 45.86/6.17    fresh626(fresh681(mtvisible(c_tptpgeo_spindlecollectormt), true2, c_tptpgeo_spindlecollectormt, c_tptpgeo_member1_mt), true2)
% 45.86/6.17  = { by axiom 7 (ax1_1123) }
% 45.86/6.17    fresh626(fresh680(genlmt(c_tptpgeo_spindlecollectormt, c_tptpgeo_member1_mt), true2, c_tptpgeo_member1_mt), true2)
% 45.86/6.18  = { by axiom 2 (ax1_140) }
% 45.86/6.18    fresh626(fresh680(true2, true2, c_tptpgeo_member1_mt), true2)
% 45.86/6.18  = { by axiom 4 (ax1_1123) }
% 45.86/6.18    fresh626(true2, true2)
% 45.86/6.18  = { by axiom 3 (ax1_207) }
% 45.86/6.18    true2
% 45.86/6.18  % SZS output end Proof
% 45.86/6.18  
% 45.86/6.18  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------