TSTP Solution File: COM012+3 by Vampire---4.8

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Vampire---4.8
% Problem  : COM012+3 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : vampire --ignore_missing on --mode portfolio/casc [--schedule casc_hol_2020] -p tptp -om szs -t %d %s

% Computer : n016.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Aug 30 18:46:10 EDT 2023

% Result   : Theorem 0.20s 0.42s
% Output   : Refutation 0.20s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   15
%            Number of leaves      :    9
% Syntax   : Number of formulae    :   49 (  11 unt;   0 def)
%            Number of atoms       :  262 (  27 equ)
%            Maximal formula atoms :   21 (   5 avg)
%            Number of connectives :  301 (  88   ~;  98   |; 104   &)
%                                         (   4 <=>;   7  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   15 (   5 avg)
%            Maximal term depth    :    1 (   1 avg)
%            Number of predicates  :   11 (   9 usr;   5 prp; 0-3 aty)
%            Number of functors    :    6 (   6 usr;   6 con; 0-0 aty)
%            Number of variables   :   43 (;  26   !;  17   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(f188,plain,
    $false,
    inference(avatar_sat_refutation,[],[f77,f86,f94,f117,f184]) ).

fof(f184,plain,
    ( ~ spl3_2
    | ~ spl3_4 ),
    inference(avatar_contradiction_clause,[],[f183]) ).

fof(f183,plain,
    ( $false
    | ~ spl3_2
    | ~ spl3_4 ),
    inference(subsumption_resolution,[],[f182,f85]) ).

fof(f85,plain,
    ( sdtmndtplgtdt0(xy,xR,xz)
    | ~ spl3_4 ),
    inference(avatar_component_clause,[],[f83]) ).

fof(f83,plain,
    ( spl3_4
  <=> sdtmndtplgtdt0(xy,xR,xz) ),
    introduced(avatar_definition,[new_symbols(naming,[spl3_4])]) ).

fof(f182,plain,
    ( ~ sdtmndtplgtdt0(xy,xR,xz)
    | ~ spl3_2 ),
    inference(subsumption_resolution,[],[f174,f55]) ).

fof(f55,plain,
    aElement0(xy),
    inference(cnf_transformation,[],[f9]) ).

fof(f9,axiom,
    ( aElement0(xz)
    & aElement0(xy)
    & aRewritingSystem0(xR)
    & aElement0(xx) ),
    file('/export/starexec/sandbox/tmp/tmp.ZX4g0NbFbX/Vampire---4.8_4589',m__349) ).

fof(f174,plain,
    ( ~ aElement0(xy)
    | ~ sdtmndtplgtdt0(xy,xR,xz)
    | ~ spl3_2 ),
    inference(resolution,[],[f171,f76]) ).

fof(f76,plain,
    ( sdtmndtplgtdt0(xx,xR,xy)
    | ~ spl3_2 ),
    inference(avatar_component_clause,[],[f74]) ).

fof(f74,plain,
    ( spl3_2
  <=> sdtmndtplgtdt0(xx,xR,xy) ),
    introduced(avatar_definition,[new_symbols(naming,[spl3_2])]) ).

fof(f171,plain,
    ! [X0] :
      ( ~ sdtmndtplgtdt0(xx,xR,X0)
      | ~ aElement0(X0)
      | ~ sdtmndtplgtdt0(X0,xR,xz) ),
    inference(subsumption_resolution,[],[f170,f53]) ).

fof(f53,plain,
    aElement0(xx),
    inference(cnf_transformation,[],[f9]) ).

fof(f170,plain,
    ! [X0] :
      ( ~ sdtmndtplgtdt0(xx,xR,X0)
      | ~ aElement0(X0)
      | ~ sdtmndtplgtdt0(X0,xR,xz)
      | ~ aElement0(xx) ),
    inference(subsumption_resolution,[],[f168,f56]) ).

fof(f56,plain,
    aElement0(xz),
    inference(cnf_transformation,[],[f9]) ).

fof(f168,plain,
    ! [X0] :
      ( ~ sdtmndtplgtdt0(xx,xR,X0)
      | ~ aElement0(xz)
      | ~ aElement0(X0)
      | ~ sdtmndtplgtdt0(X0,xR,xz)
      | ~ aElement0(xx) ),
    inference(resolution,[],[f167,f51]) ).

fof(f51,plain,
    ~ sdtmndtplgtdt0(xx,xR,xz),
    inference(cnf_transformation,[],[f30]) ).

fof(f30,plain,
    ( ~ sdtmndtasgtdt0(xx,xR,xz)
    & ~ sdtmndtplgtdt0(xx,xR,xz)
    & ! [X0] :
        ( ~ sdtmndtplgtdt0(X0,xR,xz)
        | ~ aReductOfIn0(X0,xx,xR)
        | ~ aElement0(X0) )
    & ~ aReductOfIn0(xz,xx,xR)
    & xx != xz
    & sdtmndtasgtdt0(xy,xR,xz)
    & ( ( sdtmndtplgtdt0(xy,xR,xz)
        & ( ( sdtmndtplgtdt0(sK0,xR,xz)
            & aReductOfIn0(sK0,xy,xR)
            & aElement0(sK0) )
          | aReductOfIn0(xz,xy,xR) ) )
      | xy = xz )
    & sdtmndtasgtdt0(xx,xR,xy)
    & ( ( sdtmndtplgtdt0(xx,xR,xy)
        & ( ( sdtmndtplgtdt0(sK1,xR,xy)
            & aReductOfIn0(sK1,xx,xR)
            & aElement0(sK1) )
          | aReductOfIn0(xy,xx,xR) ) )
      | xx = xy ) ),
    inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1])],[f27,f29,f28]) ).

fof(f28,plain,
    ( ? [X1] :
        ( sdtmndtplgtdt0(X1,xR,xz)
        & aReductOfIn0(X1,xy,xR)
        & aElement0(X1) )
   => ( sdtmndtplgtdt0(sK0,xR,xz)
      & aReductOfIn0(sK0,xy,xR)
      & aElement0(sK0) ) ),
    introduced(choice_axiom,[]) ).

fof(f29,plain,
    ( ? [X2] :
        ( sdtmndtplgtdt0(X2,xR,xy)
        & aReductOfIn0(X2,xx,xR)
        & aElement0(X2) )
   => ( sdtmndtplgtdt0(sK1,xR,xy)
      & aReductOfIn0(sK1,xx,xR)
      & aElement0(sK1) ) ),
    introduced(choice_axiom,[]) ).

fof(f27,plain,
    ( ~ sdtmndtasgtdt0(xx,xR,xz)
    & ~ sdtmndtplgtdt0(xx,xR,xz)
    & ! [X0] :
        ( ~ sdtmndtplgtdt0(X0,xR,xz)
        | ~ aReductOfIn0(X0,xx,xR)
        | ~ aElement0(X0) )
    & ~ aReductOfIn0(xz,xx,xR)
    & xx != xz
    & sdtmndtasgtdt0(xy,xR,xz)
    & ( ( sdtmndtplgtdt0(xy,xR,xz)
        & ( ? [X1] :
              ( sdtmndtplgtdt0(X1,xR,xz)
              & aReductOfIn0(X1,xy,xR)
              & aElement0(X1) )
          | aReductOfIn0(xz,xy,xR) ) )
      | xy = xz )
    & sdtmndtasgtdt0(xx,xR,xy)
    & ( ( sdtmndtplgtdt0(xx,xR,xy)
        & ( ? [X2] :
              ( sdtmndtplgtdt0(X2,xR,xy)
              & aReductOfIn0(X2,xx,xR)
              & aElement0(X2) )
          | aReductOfIn0(xy,xx,xR) ) )
      | xx = xy ) ),
    inference(rectify,[],[f18]) ).

fof(f18,plain,
    ( ~ sdtmndtasgtdt0(xx,xR,xz)
    & ~ sdtmndtplgtdt0(xx,xR,xz)
    & ! [X2] :
        ( ~ sdtmndtplgtdt0(X2,xR,xz)
        | ~ aReductOfIn0(X2,xx,xR)
        | ~ aElement0(X2) )
    & ~ aReductOfIn0(xz,xx,xR)
    & xx != xz
    & sdtmndtasgtdt0(xy,xR,xz)
    & ( ( sdtmndtplgtdt0(xy,xR,xz)
        & ( ? [X0] :
              ( sdtmndtplgtdt0(X0,xR,xz)
              & aReductOfIn0(X0,xy,xR)
              & aElement0(X0) )
          | aReductOfIn0(xz,xy,xR) ) )
      | xy = xz )
    & sdtmndtasgtdt0(xx,xR,xy)
    & ( ( sdtmndtplgtdt0(xx,xR,xy)
        & ( ? [X1] :
              ( sdtmndtplgtdt0(X1,xR,xy)
              & aReductOfIn0(X1,xx,xR)
              & aElement0(X1) )
          | aReductOfIn0(xy,xx,xR) ) )
      | xx = xy ) ),
    inference(flattening,[],[f17]) ).

fof(f17,plain,
    ( ~ sdtmndtasgtdt0(xx,xR,xz)
    & ~ sdtmndtplgtdt0(xx,xR,xz)
    & ! [X2] :
        ( ~ sdtmndtplgtdt0(X2,xR,xz)
        | ~ aReductOfIn0(X2,xx,xR)
        | ~ aElement0(X2) )
    & ~ aReductOfIn0(xz,xx,xR)
    & xx != xz
    & sdtmndtasgtdt0(xy,xR,xz)
    & ( ( sdtmndtplgtdt0(xy,xR,xz)
        & ( ? [X0] :
              ( sdtmndtplgtdt0(X0,xR,xz)
              & aReductOfIn0(X0,xy,xR)
              & aElement0(X0) )
          | aReductOfIn0(xz,xy,xR) ) )
      | xy = xz )
    & sdtmndtasgtdt0(xx,xR,xy)
    & ( ( sdtmndtplgtdt0(xx,xR,xy)
        & ( ? [X1] :
              ( sdtmndtplgtdt0(X1,xR,xy)
              & aReductOfIn0(X1,xx,xR)
              & aElement0(X1) )
          | aReductOfIn0(xy,xx,xR) ) )
      | xx = xy ) ),
    inference(ennf_transformation,[],[f12]) ).

fof(f12,plain,
    ~ ( ( sdtmndtasgtdt0(xy,xR,xz)
        & ( ( sdtmndtplgtdt0(xy,xR,xz)
            & ( ? [X0] :
                  ( sdtmndtplgtdt0(X0,xR,xz)
                  & aReductOfIn0(X0,xy,xR)
                  & aElement0(X0) )
              | aReductOfIn0(xz,xy,xR) ) )
          | xy = xz )
        & sdtmndtasgtdt0(xx,xR,xy)
        & ( ( sdtmndtplgtdt0(xx,xR,xy)
            & ( ? [X1] :
                  ( sdtmndtplgtdt0(X1,xR,xy)
                  & aReductOfIn0(X1,xx,xR)
                  & aElement0(X1) )
              | aReductOfIn0(xy,xx,xR) ) )
          | xx = xy ) )
     => ( sdtmndtasgtdt0(xx,xR,xz)
        | sdtmndtplgtdt0(xx,xR,xz)
        | ? [X2] :
            ( sdtmndtplgtdt0(X2,xR,xz)
            & aReductOfIn0(X2,xx,xR)
            & aElement0(X2) )
        | aReductOfIn0(xz,xx,xR)
        | xx = xz ) ),
    inference(rectify,[],[f11]) ).

fof(f11,negated_conjecture,
    ~ ( ( sdtmndtasgtdt0(xy,xR,xz)
        & ( ( sdtmndtplgtdt0(xy,xR,xz)
            & ( ? [X0] :
                  ( sdtmndtplgtdt0(X0,xR,xz)
                  & aReductOfIn0(X0,xy,xR)
                  & aElement0(X0) )
              | aReductOfIn0(xz,xy,xR) ) )
          | xy = xz )
        & sdtmndtasgtdt0(xx,xR,xy)
        & ( ( sdtmndtplgtdt0(xx,xR,xy)
            & ( ? [X0] :
                  ( sdtmndtplgtdt0(X0,xR,xy)
                  & aReductOfIn0(X0,xx,xR)
                  & aElement0(X0) )
              | aReductOfIn0(xy,xx,xR) ) )
          | xx = xy ) )
     => ( sdtmndtasgtdt0(xx,xR,xz)
        | sdtmndtplgtdt0(xx,xR,xz)
        | ? [X0] :
            ( sdtmndtplgtdt0(X0,xR,xz)
            & aReductOfIn0(X0,xx,xR)
            & aElement0(X0) )
        | aReductOfIn0(xz,xx,xR)
        | xx = xz ) ),
    inference(negated_conjecture,[],[f10]) ).

fof(f10,conjecture,
    ( ( sdtmndtasgtdt0(xy,xR,xz)
      & ( ( sdtmndtplgtdt0(xy,xR,xz)
          & ( ? [X0] :
                ( sdtmndtplgtdt0(X0,xR,xz)
                & aReductOfIn0(X0,xy,xR)
                & aElement0(X0) )
            | aReductOfIn0(xz,xy,xR) ) )
        | xy = xz )
      & sdtmndtasgtdt0(xx,xR,xy)
      & ( ( sdtmndtplgtdt0(xx,xR,xy)
          & ( ? [X0] :
                ( sdtmndtplgtdt0(X0,xR,xy)
                & aReductOfIn0(X0,xx,xR)
                & aElement0(X0) )
            | aReductOfIn0(xy,xx,xR) ) )
        | xx = xy ) )
   => ( sdtmndtasgtdt0(xx,xR,xz)
      | sdtmndtplgtdt0(xx,xR,xz)
      | ? [X0] :
          ( sdtmndtplgtdt0(X0,xR,xz)
          & aReductOfIn0(X0,xx,xR)
          & aElement0(X0) )
      | aReductOfIn0(xz,xx,xR)
      | xx = xz ) ),
    file('/export/starexec/sandbox/tmp/tmp.ZX4g0NbFbX/Vampire---4.8_4589',m__) ).

fof(f167,plain,
    ! [X2,X0,X1] :
      ( sdtmndtplgtdt0(X2,xR,X1)
      | ~ sdtmndtplgtdt0(X2,xR,X0)
      | ~ aElement0(X1)
      | ~ aElement0(X0)
      | ~ sdtmndtplgtdt0(X0,xR,X1)
      | ~ aElement0(X2) ),
    inference(resolution,[],[f66,f54]) ).

fof(f54,plain,
    aRewritingSystem0(xR),
    inference(cnf_transformation,[],[f9]) ).

fof(f66,plain,
    ! [X2,X3,X0,X1] :
      ( ~ aRewritingSystem0(X1)
      | ~ sdtmndtplgtdt0(X2,X1,X3)
      | ~ sdtmndtplgtdt0(X0,X1,X2)
      | ~ aElement0(X3)
      | ~ aElement0(X2)
      | sdtmndtplgtdt0(X0,X1,X3)
      | ~ aElement0(X0) ),
    inference(cnf_transformation,[],[f26]) ).

fof(f26,plain,
    ! [X0,X1,X2,X3] :
      ( sdtmndtplgtdt0(X0,X1,X3)
      | ~ sdtmndtplgtdt0(X2,X1,X3)
      | ~ sdtmndtplgtdt0(X0,X1,X2)
      | ~ aElement0(X3)
      | ~ aElement0(X2)
      | ~ aRewritingSystem0(X1)
      | ~ aElement0(X0) ),
    inference(flattening,[],[f25]) ).

fof(f25,plain,
    ! [X0,X1,X2,X3] :
      ( sdtmndtplgtdt0(X0,X1,X3)
      | ~ sdtmndtplgtdt0(X2,X1,X3)
      | ~ sdtmndtplgtdt0(X0,X1,X2)
      | ~ aElement0(X3)
      | ~ aElement0(X2)
      | ~ aRewritingSystem0(X1)
      | ~ aElement0(X0) ),
    inference(ennf_transformation,[],[f7]) ).

fof(f7,axiom,
    ! [X0,X1,X2,X3] :
      ( ( aElement0(X3)
        & aElement0(X2)
        & aRewritingSystem0(X1)
        & aElement0(X0) )
     => ( ( sdtmndtplgtdt0(X2,X1,X3)
          & sdtmndtplgtdt0(X0,X1,X2) )
       => sdtmndtplgtdt0(X0,X1,X3) ) ),
    file('/export/starexec/sandbox/tmp/tmp.ZX4g0NbFbX/Vampire---4.8_4589',mTCTrans) ).

fof(f117,plain,
    ~ spl3_1,
    inference(avatar_contradiction_clause,[],[f116]) ).

fof(f116,plain,
    ( $false
    | ~ spl3_1 ),
    inference(subsumption_resolution,[],[f111,f47]) ).

fof(f47,plain,
    sdtmndtasgtdt0(xy,xR,xz),
    inference(cnf_transformation,[],[f30]) ).

fof(f111,plain,
    ( ~ sdtmndtasgtdt0(xy,xR,xz)
    | ~ spl3_1 ),
    inference(backward_demodulation,[],[f52,f72]) ).

fof(f72,plain,
    ( xx = xy
    | ~ spl3_1 ),
    inference(avatar_component_clause,[],[f70]) ).

fof(f70,plain,
    ( spl3_1
  <=> xx = xy ),
    introduced(avatar_definition,[new_symbols(naming,[spl3_1])]) ).

fof(f52,plain,
    ~ sdtmndtasgtdt0(xx,xR,xz),
    inference(cnf_transformation,[],[f30]) ).

fof(f94,plain,
    ~ spl3_3,
    inference(avatar_contradiction_clause,[],[f93]) ).

fof(f93,plain,
    ( $false
    | ~ spl3_3 ),
    inference(subsumption_resolution,[],[f87,f42]) ).

fof(f42,plain,
    sdtmndtasgtdt0(xx,xR,xy),
    inference(cnf_transformation,[],[f30]) ).

fof(f87,plain,
    ( ~ sdtmndtasgtdt0(xx,xR,xy)
    | ~ spl3_3 ),
    inference(backward_demodulation,[],[f52,f81]) ).

fof(f81,plain,
    ( xy = xz
    | ~ spl3_3 ),
    inference(avatar_component_clause,[],[f79]) ).

fof(f79,plain,
    ( spl3_3
  <=> xy = xz ),
    introduced(avatar_definition,[new_symbols(naming,[spl3_3])]) ).

fof(f86,plain,
    ( spl3_3
    | spl3_4 ),
    inference(avatar_split_clause,[],[f46,f83,f79]) ).

fof(f46,plain,
    ( sdtmndtplgtdt0(xy,xR,xz)
    | xy = xz ),
    inference(cnf_transformation,[],[f30]) ).

fof(f77,plain,
    ( spl3_1
    | spl3_2 ),
    inference(avatar_split_clause,[],[f41,f74,f70]) ).

fof(f41,plain,
    ( sdtmndtplgtdt0(xx,xR,xy)
    | xx = xy ),
    inference(cnf_transformation,[],[f30]) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem    : COM012+3 : TPTP v8.1.2. Released v4.0.0.
% 0.07/0.14  % Command    : vampire --ignore_missing on --mode portfolio/casc [--schedule casc_hol_2020] -p tptp -om szs -t %d %s
% 0.14/0.35  % Computer : n016.cluster.edu
% 0.14/0.35  % Model    : x86_64 x86_64
% 0.14/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.35  % Memory   : 8042.1875MB
% 0.14/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.35  % CPULimit   : 300
% 0.14/0.35  % WCLimit    : 300
% 0.14/0.35  % DateTime   : Tue Aug 29 13:59:46 EDT 2023
% 0.14/0.35  % CPUTime    : 
% 0.14/0.35  This is a FOF_THM_RFO_SEQ problem
% 0.14/0.35  Running vampire_casc2023 --mode casc -m 16384 --cores 7 -t 300 /export/starexec/sandbox/tmp/tmp.ZX4g0NbFbX/Vampire---4.8_4589
% 0.14/0.36  % (4697)Running in auto input_syntax mode. Trying TPTP
% 0.20/0.41  % (4698)lrs+10_11_cond=on:drc=off:flr=on:fsr=off:gsp=on:gs=on:gsem=off:lma=on:msp=off:nm=4:nwc=1.5:nicw=on:sas=z3:sims=off:sp=scramble:stl=188_730 on Vampire---4 for (730ds/0Mi)
% 0.20/0.42  % (4700)dis-11_4:1_aac=none:add=off:afr=on:anc=none:bd=preordered:bs=on:bsr=on:drc=off:fsr=off:fde=none:gsp=on:irw=on:lcm=reverse:lma=on:nm=0:nwc=1.7:nicw=on:sas=z3:sims=off:sos=all:sac=on:sp=weighted_frequency:tgt=full_602 on Vampire---4 for (602ds/0Mi)
% 0.20/0.42  % (4699)dis+1010_4:1_anc=none:bd=off:drc=off:flr=on:fsr=off:nm=4:nwc=1.1:nicw=on:sas=z3_680 on Vampire---4 for (680ds/0Mi)
% 0.20/0.42  % (4703)dis+1011_4_add=large:amm=off:sims=off:sac=on:sp=frequency:tgt=ground_413 on Vampire---4 for (413ds/0Mi)
% 0.20/0.42  % (4701)lrs-3_8_anc=none:bce=on:cond=on:drc=off:flr=on:fsd=off:fsr=off:fde=unused:gsp=on:gs=on:gsaa=full_model:lcm=predicate:lma=on:nm=16:sos=all:sp=weighted_frequency:tgt=ground:urr=ec_only:stl=188_482 on Vampire---4 for (482ds/0Mi)
% 0.20/0.42  % (4702)lrs+1010_20_av=off:bd=off:bs=on:bsr=on:bce=on:flr=on:fde=none:gsp=on:nwc=3.0:tgt=ground:urr=ec_only:stl=125_424 on Vampire---4 for (424ds/0Mi)
% 0.20/0.42  % (4704)ott+11_14_av=off:bs=on:bsr=on:cond=on:flr=on:fsd=off:fde=unused:gsp=on:nm=4:nwc=1.5:tgt=full_386 on Vampire---4 for (386ds/0Mi)
% 0.20/0.42  % (4703)First to succeed.
% 0.20/0.42  % (4702)Also succeeded, but the first one will report.
% 0.20/0.42  % (4701)Also succeeded, but the first one will report.
% 0.20/0.42  % (4703)Refutation found. Thanks to Tanya!
% 0.20/0.42  % SZS status Theorem for Vampire---4
% 0.20/0.42  % SZS output start Proof for Vampire---4
% See solution above
% 0.20/0.42  % (4703)------------------------------
% 0.20/0.42  % (4703)Version: Vampire 4.7 (commit 05ef610bd on 2023-06-21 19:03:17 +0100)
% 0.20/0.42  % (4703)Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44
% 0.20/0.42  % (4703)Termination reason: Refutation
% 0.20/0.42  
% 0.20/0.42  % (4703)Memory used [KB]: 5500
% 0.20/0.42  % (4703)Time elapsed: 0.008 s
% 0.20/0.42  % (4703)------------------------------
% 0.20/0.42  % (4703)------------------------------
% 0.20/0.42  % (4697)Success in time 0.067 s
% 0.20/0.42  % Vampire---4.8 exiting
%------------------------------------------------------------------------------