TSTP Solution File: COL056-1 by CiME---2.01

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CiME---2.01
% Problem  : COL056-1 : TPTP v6.0.0. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : tptp2X_and_run_cime %s

% Computer : n153.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.11.2.el6.x86_64
% CPULimit : 300s
% DateTime : Tue Jun 10 00:19:54 EDT 2014

% Result   : Unsatisfiable 1.12s
% Output   : Refutation 1.12s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : COL056-1 : TPTP v6.0.0. Released v1.0.0.
% % Command  : tptp2X_and_run_cime %s
% % Computer : n153.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.11.2.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jun  5 22:33:28 CDT 2014
% % CPUTime  : 1.12 
% Processing problem /tmp/CiME_7063_n153.star.cs.uiowa.edu
% #verbose 1;
% let F = signature " c,b,a : constant;  response : 2;  compose : 2;";
% let X = vars "X Y W V";
% let Axioms = equations F X "
% response(compose(X,Y),W) = response(X,response(Y,W));
% response(a,b) = c;
% response(a,c) = b;
% ";
% 
% let s1 = status F "
% c lr_lex;
% b lr_lex;
% a lr_lex;
% response lr_lex;
% compose lr_lex;
% ";
% 
% let p1 = precedence F "
% compose > response > a > b > c";
% 
% let s2 = status F "
% c mul;
% b mul;
% a mul;
% response mul;
% compose mul;
% ";
% 
% let p2 = precedence F "
% compose > response > a = b = c";
% 
% let o_auto = AUTO Axioms;
% 
% let o = LEX o_auto (LEX (ACRPO s1 p1) (ACRPO s2 p2));
% 
% let Conjectures = equations F X " response(W,V) = V;"
% ;
% (*
% let Red_Axioms = normalize_equations Defining_rules Axioms;
% 
% let Red_Conjectures =  normalize_equations Defining_rules Conjectures;
% *)
% #time on;
% 
% let res = prove_conj_by_ordered_completion o Axioms Conjectures;
% 
% #time off;
% 
% 
% let status = if res then "unsatisfiable" else "satisfiable";
% #quit;
% Verbose level is now 1
% 
% F : signature = <signature>
% X : variable_set = <variable set>
% 
% Axioms : (F,X) equations = { response(compose(X,Y),W) =
% response(X,response(Y,W)),
% response(a,b) = c,
% response(a,c) = b } (3 equation(s))
% s1 : F status = <status>
% p1 : F precedence = <precedence>
% s2 : F status = <status>
% p2 : F precedence = <precedence>
% o_auto : F term_ordering = <term ordering>
% o : F term_ordering = <term ordering>
% Conjectures : (F,X) equations = { response(W,V) = V } (1 equation(s))
% time is now on
% 
% Initializing completion ...
% New rule produced : [1] (eq)(response(W,V),V) -> (false)
% Current number of equations to process: 0
% Current number of ordered equations: 4
% Current number of rules: 1
% New rule produced : [2] (eq)(X,X) -> (true)
% Current number of equations to process: 0
% Current number of ordered equations: 3
% Current number of rules: 2
% New rule produced : [3] response(a,c) -> b
% Current number of equations to process: 0
% Current number of ordered equations: 2
% Current number of rules: 3
% New rule produced : [4] response(a,b) -> c
% Current number of equations to process: 0
% Current number of ordered equations: 1
% Current number of rules: 4
% New rule produced : [5] response(compose(X,Y),W) -> response(X,response(Y,W))
% Current number of equations to process: 0
% Current number of ordered equations: 0
% Current number of rules: 5
% New rule produced : [6] (eq)(b,c) -> (false)
% Current number of equations to process: 0
% Current number of ordered equations: 0
% Current number of rules: 6
% New rule produced : [7] (eq)(c,b) -> (false)
% Current number of equations to process: 0
% Current number of ordered equations: 0
% Current number of rules: 7
% New rule produced : [8] (eq)(response(X,response(Y,W)),W) -> (false)
% Current number of equations to process: 0
% Current number of ordered equations: 0
% Current number of rules: 8
% New rule produced : [9] (eq)(response(X,b),c) -> (false)
% Current number of equations to process: 0
% Current number of ordered equations: 0
% Current number of rules: 9
% New rule produced : [10] (eq)(response(X,c),b) -> (false)
% Current number of equations to process: 0
% Current number of ordered equations: 0
% Current number of rules: 10
% Rule [10] (eq)(response(X,c),b) -> (false) is composed into [10]
% (eq)(response(X,c),b)
% -> (true)
% Rule [9] (eq)(response(X,b),c) -> (false) is composed into [9]
% (eq)(response(X,b),c)
% -> (true)
% Rule [8] (eq)(response(X,response(Y,W)),W) -> (false) is composed into 
% [8] (eq)(response(X,response(Y,W)),W) -> (true)
% Rule [7] (eq)(c,b) -> (false) is composed into [7] (eq)(c,b) -> (true)
% Rule [6] (eq)(b,c) -> (false) is composed into [6] (eq)(b,c) -> (true)
% Rule [1] (eq)(response(W,V),V) -> (false) is composed into [1]
% (eq)(response(W,V),V)
% -> (true)
% New rule produced : [11] (false) -> (true)
% The conjecture has been reduced. 
% Conjecture is now:
% Trivial
% 
% Current number of equations to process: 1
% Current number of ordered equations: 0
% Current number of rules: 11
% The current conjecture is true and the solution is the identity
% % SZS output start Refutation
% 
% The following 7 rules have been used:
% [1] 
% (eq)(response(W,V),V) -> (false); trace = in the starting set
% [3] response(a,c) -> b; trace = in the starting set
% [4] response(a,b) -> c; trace = in the starting set
% [5] response(compose(X,Y),W) -> response(X,response(Y,W)); trace = in the starting set
% [8] (eq)(response(X,response(Y,W)),W) -> (false); trace = Cp of 5 and 1
% [9] (eq)(response(X,b),c) -> (false); trace = Cp of 8 and 3
% [11] (false) -> (true); trace = Cp of 9 and 4
% % SZS output end Refutation
% All conjectures have been proven
% 
% Execution time: 0.000000 sec
% res : bool = true
% time is now off
% 
% status : string = "unsatisfiable"
% % SZS status Unsatisfiable
% CiME interrupted
% 
% EOF
%------------------------------------------------------------------------------