TSTP Solution File: COL006-4 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : COL006-4 : TPTP v8.1.2. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n027.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Aug 30 18:31:36 EDT 2023

% Result   : Unsatisfiable 0.20s 0.50s
% Output   : Proof 0.20s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : COL006-4 : TPTP v8.1.2. Released v1.0.0.
% 0.00/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.16/0.34  % Computer : n027.cluster.edu
% 0.16/0.34  % Model    : x86_64 x86_64
% 0.16/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.16/0.34  % Memory   : 8042.1875MB
% 0.16/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.16/0.34  % CPULimit : 300
% 0.16/0.34  % WCLimit  : 300
% 0.16/0.34  % DateTime : Sun Aug 27 05:44:20 EDT 2023
% 0.16/0.34  % CPUTime  : 
% 0.20/0.50  Command-line arguments: --lhs-weight 1 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 0.20/0.50  
% 0.20/0.50  % SZS status Unsatisfiable
% 0.20/0.50  
% 0.20/0.51  % SZS output start Proof
% 0.20/0.51  Take the following subset of the input axioms:
% 0.20/0.51    fof(k_definition, axiom, ![X, Y]: apply(apply(k, X), Y)=X).
% 0.20/0.51    fof(prove_strong_fixed_point, negated_conjecture, ~fixed_point(apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)))).
% 0.20/0.51    fof(s_definition, axiom, ![Z, X2, Y2]: apply(apply(apply(s, X2), Y2), Z)=apply(apply(X2, Z), apply(Y2, Z))).
% 0.20/0.51    fof(strong_fixed_point, axiom, ![Strong_fixed_point]: (apply(Strong_fixed_point, fixed_pt)!=apply(fixed_pt, apply(Strong_fixed_point, fixed_pt)) | fixed_point(Strong_fixed_point))).
% 0.20/0.51  
% 0.20/0.51  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.20/0.51  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.20/0.51  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.20/0.51    fresh(y, y, x1...xn) = u
% 0.20/0.51    C => fresh(s, t, x1...xn) = v
% 0.20/0.51  where fresh is a fresh function symbol and x1..xn are the free
% 0.20/0.51  variables of u and v.
% 0.20/0.51  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.20/0.51  input problem has no model of domain size 1).
% 0.20/0.51  
% 0.20/0.51  The encoding turns the above axioms into the following unit equations and goals:
% 0.20/0.51  
% 0.20/0.51  Axiom 1 (strong_fixed_point): fresh(X, X, Y) = true.
% 0.20/0.51  Axiom 2 (k_definition): apply(apply(k, X), Y) = X.
% 0.20/0.51  Axiom 3 (s_definition): apply(apply(apply(s, X), Y), Z) = apply(apply(X, Z), apply(Y, Z)).
% 0.20/0.51  Axiom 4 (strong_fixed_point): fresh(apply(X, fixed_pt), apply(fixed_pt, apply(X, fixed_pt)), X) = fixed_point(X).
% 0.20/0.51  
% 0.20/0.51  Lemma 5: apply(apply(apply(s, k), X), Y) = Y.
% 0.20/0.51  Proof:
% 0.20/0.51    apply(apply(apply(s, k), X), Y)
% 0.20/0.51  = { by axiom 3 (s_definition) }
% 0.20/0.51    apply(apply(k, Y), apply(X, Y))
% 0.20/0.51  = { by axiom 2 (k_definition) }
% 0.20/0.51    Y
% 0.20/0.51  
% 0.20/0.51  Lemma 6: apply(apply(apply(s, apply(k, X)), Y), Z) = apply(X, apply(Y, Z)).
% 0.20/0.51  Proof:
% 0.20/0.51    apply(apply(apply(s, apply(k, X)), Y), Z)
% 0.20/0.51  = { by axiom 3 (s_definition) }
% 0.20/0.51    apply(apply(apply(k, X), Z), apply(Y, Z))
% 0.20/0.51  = { by axiom 2 (k_definition) }
% 0.20/0.51    apply(X, apply(Y, Z))
% 0.20/0.51  
% 0.20/0.51  Lemma 7: apply(apply(apply(apply(s, s), Z), X), Y) = apply(apply(X, Y), apply(apply(Z, X), Y)).
% 0.20/0.51  Proof:
% 0.20/0.51    apply(apply(apply(apply(s, s), Z), X), Y)
% 0.20/0.51  = { by axiom 3 (s_definition) }
% 0.20/0.51    apply(apply(apply(s, X), apply(Z, X)), Y)
% 0.20/0.51  = { by axiom 3 (s_definition) }
% 0.20/0.51    apply(apply(X, Y), apply(apply(Z, X), Y))
% 0.20/0.51  
% 0.20/0.51  Lemma 8: apply(apply(apply(apply(s, s), apply(apply(s, k), Z)), X), Y) = apply(apply(X, Y), apply(X, Y)).
% 0.20/0.51  Proof:
% 0.20/0.51    apply(apply(apply(apply(s, s), apply(apply(s, k), Z)), X), Y)
% 0.20/0.51  = { by lemma 7 }
% 0.20/0.51    apply(apply(X, Y), apply(apply(apply(apply(s, k), Z), X), Y))
% 0.20/0.51  = { by lemma 5 }
% 0.20/0.51    apply(apply(X, Y), apply(X, Y))
% 0.20/0.51  
% 0.20/0.51  Goal 1 (prove_strong_fixed_point): fixed_point(apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k))) = true.
% 0.20/0.51  Proof:
% 0.20/0.51    fixed_point(apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)))
% 0.20/0.51  = { by axiom 4 (strong_fixed_point) R->L }
% 0.20/0.51    fresh(apply(apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)), fixed_pt), apply(fixed_pt, apply(apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)), fixed_pt)), apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)))
% 0.20/0.51  = { by lemma 6 }
% 0.20/0.51    fresh(apply(apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)), fixed_pt), apply(fixed_pt, apply(apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))), apply(apply(apply(s, apply(k, s)), k), fixed_pt))), apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)))
% 0.20/0.51  = { by lemma 8 }
% 0.20/0.51    fresh(apply(apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)), fixed_pt), apply(fixed_pt, apply(apply(apply(apply(s, s), apply(s, k)), apply(apply(apply(s, apply(k, s)), k), fixed_pt)), apply(apply(apply(s, s), apply(s, k)), apply(apply(apply(s, apply(k, s)), k), fixed_pt)))), apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)))
% 0.20/0.51  = { by axiom 2 (k_definition) R->L }
% 0.20/0.51    fresh(apply(apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)), fixed_pt), apply(apply(apply(k, fixed_pt), apply(apply(apply(s, s), apply(s, k)), apply(apply(apply(s, apply(k, s)), k), fixed_pt))), apply(apply(apply(apply(s, s), apply(s, k)), apply(apply(apply(s, apply(k, s)), k), fixed_pt)), apply(apply(apply(s, s), apply(s, k)), apply(apply(apply(s, apply(k, s)), k), fixed_pt)))), apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)))
% 0.20/0.52  = { by axiom 3 (s_definition) R->L }
% 0.20/0.52    fresh(apply(apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)), fixed_pt), apply(apply(apply(s, apply(k, fixed_pt)), apply(apply(apply(s, s), apply(s, k)), apply(apply(apply(s, apply(k, s)), k), fixed_pt))), apply(apply(apply(s, s), apply(s, k)), apply(apply(apply(s, apply(k, s)), k), fixed_pt))), apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)))
% 0.20/0.52  = { by lemma 6 R->L }
% 0.20/0.52    fresh(apply(apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)), fixed_pt), apply(apply(apply(apply(apply(s, apply(k, s)), k), fixed_pt), apply(apply(apply(s, s), apply(s, k)), apply(apply(apply(s, apply(k, s)), k), fixed_pt))), apply(apply(apply(s, s), apply(s, k)), apply(apply(apply(s, apply(k, s)), k), fixed_pt))), apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)))
% 0.20/0.52  = { by lemma 5 R->L }
% 0.20/0.52    fresh(apply(apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)), fixed_pt), apply(apply(apply(apply(apply(s, apply(k, s)), k), fixed_pt), apply(apply(apply(s, s), apply(s, k)), apply(apply(apply(s, apply(k, s)), k), fixed_pt))), apply(apply(apply(s, k), apply(apply(apply(s, apply(k, s)), k), fixed_pt)), apply(apply(apply(s, s), apply(s, k)), apply(apply(apply(s, apply(k, s)), k), fixed_pt)))), apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)))
% 0.20/0.52  = { by lemma 7 R->L }
% 0.20/0.52    fresh(apply(apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)), fixed_pt), apply(apply(apply(apply(s, s), apply(s, k)), apply(apply(apply(s, apply(k, s)), k), fixed_pt)), apply(apply(apply(s, s), apply(s, k)), apply(apply(apply(s, apply(k, s)), k), fixed_pt))), apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)))
% 0.20/0.52  = { by lemma 8 R->L }
% 0.20/0.52    fresh(apply(apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)), fixed_pt), apply(apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))), apply(apply(apply(s, apply(k, s)), k), fixed_pt)), apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)))
% 0.20/0.52  = { by lemma 6 R->L }
% 0.20/0.52    fresh(apply(apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)), fixed_pt), apply(apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)), fixed_pt), apply(apply(s, apply(k, apply(apply(apply(s, s), apply(apply(s, k), k)), apply(apply(s, s), apply(s, k))))), apply(apply(s, apply(k, s)), k)))
% 0.20/0.52  = { by axiom 1 (strong_fixed_point) }
% 0.20/0.52    true
% 0.20/0.52  % SZS output end Proof
% 0.20/0.52  
% 0.20/0.52  RESULT: Unsatisfiable (the axioms are contradictory).
%------------------------------------------------------------------------------