TSTP Solution File: CAT008-1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : CAT008-1 : TPTP v8.1.2. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n027.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Aug 30 18:18:52 EDT 2023

% Result   : Unsatisfiable 0.19s 0.51s
% Output   : Proof 0.19s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : CAT008-1 : TPTP v8.1.2. Released v1.0.0.
% 0.12/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n027.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Sun Aug 27 00:57:20 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 0.19/0.51  Command-line arguments: --lhs-weight 9 --flip-ordering --complete-subsets --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 0.19/0.51  
% 0.19/0.51  % SZS status Unsatisfiable
% 0.19/0.51  
% 0.19/0.51  % SZS output start Proof
% 0.19/0.51  Take the following subset of the input axioms:
% 0.19/0.51    fof(ab_defined, hypothesis, defined(a, b)).
% 0.19/0.51    fof(associative_property2, axiom, ![X, Y, Z, Xy]: (~product(X, Y, Xy) | (~defined(Xy, Z) | defined(Y, Z)))).
% 0.19/0.51    fof(category_theory_axiom3, axiom, ![Yz, X2, Y2, Z2]: (~product(Y2, Z2, Yz) | (~defined(X2, Yz) | defined(X2, Y2)))).
% 0.19/0.51    fof(codomain_is_an_identity_map, axiom, ![X2]: identity_map(codomain(X2))).
% 0.19/0.51    fof(composition_is_well_defined, axiom, ![W, X2, Y2, Z2]: (~product(X2, Y2, Z2) | (~product(X2, Y2, W) | Z2=W))).
% 0.19/0.51    fof(domain_is_an_identity_map, axiom, ![X2]: identity_map(domain(X2))).
% 0.19/0.51    fof(identity1, axiom, ![X2, Y2]: (~defined(X2, Y2) | (~identity_map(X2) | product(X2, Y2, Y2)))).
% 0.19/0.51    fof(identity2, axiom, ![X2, Y2]: (~defined(X2, Y2) | (~identity_map(Y2) | product(X2, Y2, X2)))).
% 0.19/0.51    fof(product_on_codomain, axiom, ![X2]: product(codomain(X2), X2, X2)).
% 0.19/0.51    fof(product_on_domain, axiom, ![X2]: product(X2, domain(X2), X2)).
% 0.19/0.51    fof(prove_domain_of_a_equals_codomain_of_b, negated_conjecture, domain(a)!=codomain(b)).
% 0.19/0.51  
% 0.19/0.51  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.19/0.51  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.19/0.51  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.19/0.51    fresh(y, y, x1...xn) = u
% 0.19/0.51    C => fresh(s, t, x1...xn) = v
% 0.19/0.51  where fresh is a fresh function symbol and x1..xn are the free
% 0.19/0.51  variables of u and v.
% 0.19/0.51  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.19/0.51  input problem has no model of domain size 1).
% 0.19/0.51  
% 0.19/0.51  The encoding turns the above axioms into the following unit equations and goals:
% 0.19/0.51  
% 0.19/0.51  Axiom 1 (ab_defined): defined(a, b) = true.
% 0.19/0.51  Axiom 2 (domain_is_an_identity_map): identity_map(domain(X)) = true.
% 0.19/0.51  Axiom 3 (codomain_is_an_identity_map): identity_map(codomain(X)) = true.
% 0.19/0.51  Axiom 4 (product_on_domain): product(X, domain(X), X) = true.
% 0.19/0.51  Axiom 5 (product_on_codomain): product(codomain(X), X, X) = true.
% 0.19/0.51  Axiom 6 (composition_is_well_defined): fresh(X, X, Y, Z) = Z.
% 0.19/0.51  Axiom 7 (associative_property2): fresh15(X, X, Y, Z) = true.
% 0.19/0.51  Axiom 8 (category_theory_axiom3): fresh11(X, X, Y, Z) = true.
% 0.19/0.51  Axiom 9 (identity1): fresh6(X, X, Y, Z) = product(Y, Z, Z).
% 0.19/0.51  Axiom 10 (identity1): fresh5(X, X, Y, Z) = true.
% 0.19/0.51  Axiom 11 (identity2): fresh4(X, X, Y, Z) = product(Y, Z, Y).
% 0.19/0.51  Axiom 12 (identity2): fresh3(X, X, Y, Z) = true.
% 0.19/0.51  Axiom 13 (associative_property2): fresh17(X, X, Y, Z, W) = defined(Y, W).
% 0.19/0.51  Axiom 14 (category_theory_axiom3): fresh12(X, X, Y, Z, W) = defined(W, Y).
% 0.19/0.51  Axiom 15 (identity1): fresh6(identity_map(X), true, X, Y) = fresh5(defined(X, Y), true, X, Y).
% 0.19/0.51  Axiom 16 (identity2): fresh4(identity_map(X), true, Y, X) = fresh3(defined(Y, X), true, Y, X).
% 0.19/0.51  Axiom 17 (composition_is_well_defined): fresh2(X, X, Y, Z, W, V) = W.
% 0.19/0.51  Axiom 18 (associative_property2): fresh17(product(X, Y, Z), true, Y, Z, W) = fresh15(defined(Z, W), true, Y, W).
% 0.19/0.51  Axiom 19 (category_theory_axiom3): fresh12(product(X, Y, Z), true, X, Z, W) = fresh11(defined(W, Z), true, X, W).
% 0.19/0.51  Axiom 20 (composition_is_well_defined): fresh2(product(X, Y, Z), true, X, Y, W, Z) = fresh(product(X, Y, W), true, W, Z).
% 0.19/0.51  
% 0.19/0.51  Lemma 21: defined(domain(a), codomain(b)) = true.
% 0.19/0.51  Proof:
% 0.19/0.51    defined(domain(a), codomain(b))
% 0.19/0.51  = { by axiom 14 (category_theory_axiom3) R->L }
% 0.19/0.51    fresh12(true, true, codomain(b), b, domain(a))
% 0.19/0.51  = { by axiom 5 (product_on_codomain) R->L }
% 0.19/0.51    fresh12(product(codomain(b), b, b), true, codomain(b), b, domain(a))
% 0.19/0.51  = { by axiom 19 (category_theory_axiom3) }
% 0.19/0.51    fresh11(defined(domain(a), b), true, codomain(b), domain(a))
% 0.19/0.51  = { by axiom 13 (associative_property2) R->L }
% 0.19/0.51    fresh11(fresh17(true, true, domain(a), a, b), true, codomain(b), domain(a))
% 0.19/0.51  = { by axiom 4 (product_on_domain) R->L }
% 0.19/0.51    fresh11(fresh17(product(a, domain(a), a), true, domain(a), a, b), true, codomain(b), domain(a))
% 0.19/0.51  = { by axiom 18 (associative_property2) }
% 0.19/0.51    fresh11(fresh15(defined(a, b), true, domain(a), b), true, codomain(b), domain(a))
% 0.19/0.51  = { by axiom 1 (ab_defined) }
% 0.19/0.51    fresh11(fresh15(true, true, domain(a), b), true, codomain(b), domain(a))
% 0.19/0.51  = { by axiom 7 (associative_property2) }
% 0.19/0.51    fresh11(true, true, codomain(b), domain(a))
% 0.19/0.51  = { by axiom 8 (category_theory_axiom3) }
% 0.19/0.51    true
% 0.19/0.51  
% 0.19/0.51  Goal 1 (prove_domain_of_a_equals_codomain_of_b): domain(a) = codomain(b).
% 0.19/0.51  Proof:
% 0.19/0.51    domain(a)
% 0.19/0.51  = { by axiom 17 (composition_is_well_defined) R->L }
% 0.19/0.51    fresh2(true, true, domain(a), codomain(b), domain(a), codomain(b))
% 0.19/0.51  = { by axiom 10 (identity1) R->L }
% 0.19/0.51    fresh2(fresh5(true, true, domain(a), codomain(b)), true, domain(a), codomain(b), domain(a), codomain(b))
% 0.19/0.51  = { by lemma 21 R->L }
% 0.19/0.52    fresh2(fresh5(defined(domain(a), codomain(b)), true, domain(a), codomain(b)), true, domain(a), codomain(b), domain(a), codomain(b))
% 0.19/0.52  = { by axiom 15 (identity1) R->L }
% 0.19/0.52    fresh2(fresh6(identity_map(domain(a)), true, domain(a), codomain(b)), true, domain(a), codomain(b), domain(a), codomain(b))
% 0.19/0.52  = { by axiom 2 (domain_is_an_identity_map) }
% 0.19/0.52    fresh2(fresh6(true, true, domain(a), codomain(b)), true, domain(a), codomain(b), domain(a), codomain(b))
% 0.19/0.52  = { by axiom 9 (identity1) }
% 0.19/0.52    fresh2(product(domain(a), codomain(b), codomain(b)), true, domain(a), codomain(b), domain(a), codomain(b))
% 0.19/0.52  = { by axiom 20 (composition_is_well_defined) }
% 0.19/0.52    fresh(product(domain(a), codomain(b), domain(a)), true, domain(a), codomain(b))
% 0.19/0.52  = { by axiom 11 (identity2) R->L }
% 0.19/0.52    fresh(fresh4(true, true, domain(a), codomain(b)), true, domain(a), codomain(b))
% 0.19/0.52  = { by axiom 3 (codomain_is_an_identity_map) R->L }
% 0.19/0.52    fresh(fresh4(identity_map(codomain(b)), true, domain(a), codomain(b)), true, domain(a), codomain(b))
% 0.19/0.52  = { by axiom 16 (identity2) }
% 0.19/0.52    fresh(fresh3(defined(domain(a), codomain(b)), true, domain(a), codomain(b)), true, domain(a), codomain(b))
% 0.19/0.52  = { by lemma 21 }
% 0.19/0.52    fresh(fresh3(true, true, domain(a), codomain(b)), true, domain(a), codomain(b))
% 0.19/0.52  = { by axiom 12 (identity2) }
% 0.19/0.52    fresh(true, true, domain(a), codomain(b))
% 0.19/0.52  = { by axiom 6 (composition_is_well_defined) }
% 0.19/0.52    codomain(b)
% 0.19/0.52  % SZS output end Proof
% 0.19/0.52  
% 0.19/0.52  RESULT: Unsatisfiable (the axioms are contradictory).
%------------------------------------------------------------------------------