TSTP Solution File: BOO039-1 by Gandalf---c-2.6

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Gandalf---c-2.6
% Problem  : BOO039-1 : TPTP v3.4.2. Released v2.5.0.
% Transfm  : add_equality:r
% Format   : otter:hypothesis:set(auto),clear(print_given)
% Command  : gandalf-wrapper -time %d %s

% Computer : art02.cs.miami.edu
% Model    : i686 unknown
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 1000MB
% OS       : Linux 2.4.22-21mdk-i686-up-4GB
% CPULimit : 600s

% Result   : Timeout 607.9s
% Output   : None 
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 
% Gandalf c-2.6 r1 starting to prove: /home/graph/tptp/TSTP/PreparedTPTP/otter:hypothesis:set(auto),clear(print_given)---add_equality:r/BOO/BOO039-1+eq_r.in
% Using automatic strategy selection.
% Time limit in seconds: 600
% 
% prove-all-passes started
% 
% detected problem class: peq
% 
% strategies selected: 
% (hyper 30 #f 5 3)
% (binary-unit 12 #f)
% (binary-unit-uniteq 12 #f)
% (binary-posweight-kb-big-order 60 #f 5 3)
% (binary-posweight-lex-big-order 30 #f 5 3)
% (binary 30 #t)
% (binary-posweight-kb-big-order 156 #f)
% (binary-posweight-lex-big-order 102 #f)
% (binary-posweight-firstpref-order 60 #f)
% (binary-order 30 #f)
% (binary-posweight-kb-small-order 48 #f)
% (binary-posweight-lex-small-order 30 #f)
% 
% 
% SOS clause 
% -equal(nand(nand(a,a),nand(b,a)),a) | -equal(nand(a,nand(b,nand(a,c))),nand(nand(nand(c,b),b),a)).
% was split for some strategies as: 
% -equal(nand(nand(a,a),nand(b,a)),a).
% -equal(nand(a,nand(b,nand(a,c))),nand(nand(nand(c,b),b),a)).
% 
% Starting a split proof attempt with 2 components.
% 
% Split component 1 started.
% 
% START OF PROOFPART
% Making new sos for split:
% Original clause to be split: 
% -equal(nand(nand(a,a),nand(b,a)),a) | -equal(nand(a,nand(b,nand(a,c))),nand(nand(nand(c,b),b),a)).
% Split part used next: -equal(nand(nand(a,a),nand(b,a)),a).
% END OF PROOFPART
% **** EMPTY CLAUSE DERIVED ****
% 
% 
% timer checkpoints: c(3,40,0,6,0,0,7,50,0,10,0,0,13,50,0,16,0,0,11933,4,756,12029,5,1001,12029,1,1001,12029,50,1001,12029,40,1001,12032,0,1001,15735,3,1205,16215,4,1333,17115,5,1402,17115,1,1402,17115,50,1402,17115,40,1402,17118,0,1402,20444,3,1606,21301,4,1767,22106,5,1803,22123,1,1803,22123,50,1804,22123,40,1804,22126,0,1804,22127,50,1804,22130,0,1817,22133,50,1818,22136,0,1832,34742,3,2786,42161,4,3265,46984,5,3733,46985,1,3733,46985,50,3735,46985,40,3735,46988,0,3735,46989,50,3735,46992,0,3749,46995,50,3749,46998,0,3761,56379,3,4236,59266,4,4442,64554,5,4662,64554,1,4662,64554,50,4663,64554,40,4663,64557,0,4663,64558,50,4663,64558,40,4663,64561,0,4682,91762,3,7304,103365,4,8649,113472,5,9883,113489,1,9884,113489,50,9887,113489,40,9887,113492,0,9887,129168,3,11599,137545,4,12442,146661,5,13288,146663,1,13288,146663,50,13290,146663,40,13290,146666,0,13290,162900,3,14291,170692,4,14892,175021,5,15291,175027,1,15291,175027,50,15292,175027,40,15292,175030,0,15292,186452,3,15804,190839,4,16045,196141,5,16306,196141,1,16306,196141,50,16308,196141,40,16308,196144,0,16308,204919,3,17111,207249,4,17522,210894,5,17909,210894,1,17909,210894,50,17910,210894,40,17910,210897,0,17910,221102,3,18411,224257,4,18671,228810,5,18911,228810,1,18911,228810,50,18911,228810,40,18911,228810,40,18911,228813,0,18911,228813,50,18911,228816,0,18911,228818,50,18911,228821,0,18924)
% 
% 
% START OF PROOF
% 228820 [] equal(nand(nand(X,nand(nand(Y,X),X)),nand(Y,nand(Z,X))),Y).
% 228821 [] -equal(nand(nand(a,a),nand(b,a)),a).
% 228822 [para:228820.1.1,228820.1.1.1.2.1] equal(nand(nand(nand(X,nand(Y,Z)),nand(X,nand(X,nand(Y,Z)))),nand(nand(Z,nand(nand(X,Z),Z)),nand(U,nand(X,nand(Y,Z))))),nand(Z,nand(nand(X,Z),Z))).
% 228823 [para:228820.1.1,228820.1.1.2.2] equal(nand(nand(nand(X,nand(Y,Z)),nand(nand(U,nand(X,nand(Y,Z))),nand(X,nand(Y,Z)))),nand(U,X)),U).
% 228824 [para:228823.1.1,228820.1.1.2.2] equal(nand(nand(nand(X,Y),nand(nand(Z,nand(X,Y)),nand(X,Y))),nand(Z,X)),Z).
% 228825 [para:228820.1.1,228823.1.1.1.1,demod:228820] equal(nand(nand(X,nand(nand(Y,X),X)),nand(Y,nand(Z,nand(nand(X,Z),Z)))),Y).
% 228826 [para:228820.1.1,228823.1.1.1.2.1] equal(nand(nand(nand(X,nand(Y,Z)),nand(X,nand(X,nand(Y,Z)))),nand(nand(Z,nand(nand(X,Z),Z)),X)),nand(Z,nand(nand(X,Z),Z))).
% 228827 [para:228824.1.1,228820.1.1.1.2.1] equal(nand(nand(nand(X,Y),nand(X,nand(X,Y))),nand(nand(nand(Y,Z),nand(nand(X,nand(Y,Z)),nand(Y,Z))),nand(U,nand(X,Y)))),nand(nand(Y,Z),nand(nand(X,nand(Y,Z)),nand(Y,Z)))).
% 228828 [para:228824.1.1,228824.1.1.1.2.1] equal(nand(nand(nand(X,Y),nand(X,nand(X,Y))),nand(nand(nand(Y,Z),nand(nand(X,nand(Y,Z)),nand(Y,Z))),X)),nand(nand(Y,Z),nand(nand(X,nand(Y,Z)),nand(Y,Z)))).
% 228831 [para:228825.1.1,228822.1.1.2,demod:228825] equal(nand(X,X),nand(X,nand(nand(X,X),X))).
% 228832 [para:228831.1.2,228820.1.1.1] equal(nand(nand(X,X),nand(X,nand(Y,X))),X).
% 228834 [para:228831.1.2,228820.1.1.2,demod:228831] equal(nand(nand(X,X),nand(X,X)),X).
% 228839 [para:228831.1.2,228822.1.1.1.1,demod:228832,228831] equal(nand(X,nand(nand(X,X),nand(Y,nand(X,X)))),nand(X,X)).
% 228849 [para:228834.1.1,228825.1.1.1.2.1,demod:228832] equal(nand(X,nand(nand(X,X),nand(Y,nand(nand(nand(X,X),Y),Y)))),nand(X,X)).
% 228856 [para:228832.1.1,228825.1.1.2] equal(nand(nand(X,nand(nand(nand(Y,Y),X),X)),Y),nand(Y,Y)).
% 228861 [para:228839.1.1,228825.1.1.2] equal(nand(nand(X,nand(nand(Y,X),X)),nand(Y,Y)),Y).
% 228866 [para:228861.1.1,228824.1.1.1.2.1,demod:228832] equal(nand(X,nand(nand(Y,nand(nand(X,Y),Y)),X)),nand(Y,nand(nand(X,Y),Y))).
% 228893 [para:228866.1.1,228820.1.1.2,demod:228831] equal(nand(nand(X,X),nand(Y,nand(nand(X,Y),Y))),X).
% 228901 [para:228861.1.1,228866.1.1.2.1.2.1,demod:228861,228832] equal(nand(nand(X,nand(nand(Y,X),X)),nand(Y,nand(X,nand(nand(Y,X),X)))),Y).
% 228905 [para:228893.1.1,228823.1.1.1.2.1,demod:228901] equal(nand(X,nand(nand(X,X),Y)),nand(X,X)).
% 228914 [para:228820.1.1,228905.1.1.2.1,demod:228834,228905] equal(nand(nand(X,X),nand(X,Y)),X).
% 228919 [para:228905.1.1,228856.1.1.1.2.1,demod:228914] equal(nand(nand(nand(X,Y),nand(X,nand(X,Y))),X),nand(X,X)).
% 228937 [para:228828.1.1,228820.1.1.2,demod:228893,228905,228919] equal(X,nand(nand(X,Y),nand(X,nand(X,Y)))).
% 228941 [para:228937.1.2,228823.1.1.1.2.1,demod:228937] equal(nand(X,nand(nand(X,Y),X)),nand(X,Y)).
% 228946 [para:228937.1.2,228827.1.1.2.1.2.1,demod:228937] equal(nand(nand(X,Y),nand(X,nand(Z,nand(nand(X,Y),X)))),X).
% 228950 [para:228941.1.1,228861.1.1.1.2.1,demod:228937] equal(nand(nand(X,Y),nand(X,X)),X).
% 228951 [para:228941.1.1,228856.1.1.1.2.1,demod:228937] equal(nand(nand(nand(X,X),Y),X),nand(X,X)).
% 228970 [para:228950.1.1,228826.1.1.2,demod:228951,228937] equal(nand(nand(X,X),X),nand(X,nand(X,X))).
% 228972 [para:228950.1.1,228849.1.1.2.2.2.1,demod:228970,228937] equal(nand(X,nand(X,nand(X,X))),nand(X,X)).
% 229056 [para:228946.1.1,228822.1.1.2,demod:228937] equal(nand(X,Y),nand(Y,nand(nand(X,Y),Y))).
% 229071 [para:229056.1.2,228820.1.1.2,demod:228972,228970,slowcut:228821] contradiction
% END OF PROOF
% 
% Proof found by the following strategy:
% 
% using hyperresolution
% not using sos strategy
% using positive unit paramodulation strategy
% using dynamic demodulation
% using ordered paramodulation
% using kb ordering for equality
% preferring bigger arities for lex ordering
% clause length limited to 3
% clause depth limited to 7
% seconds given: 20
% 
% 
% Split component 2 started.
% 
% START OF PROOFPART
% Making new sos for split:
% Original clause to be split: 
% -equal(nand(nand(a,a),nand(b,a)),a) | -equal(nand(a,nand(b,nand(a,c))),nand(nand(nand(c,b),b),a)).
% Split part used next: -equal(nand(a,nand(b,nand(a,c))),nand(nand(nand(c,b),b),a)).
% END OF PROOFPART
% using hyperresolution
% not using sos strategy
% using positive unit paramodulation strategy
% using dynamic demodulation
% using ordered paramodulation
% using kb ordering for equality
% preferring bigger arities for lex ordering
% clause length limited to 3
% clause depth limited to 5
% seconds given: 20
% 
% 
% proof attempt stopped: sos exhausted
% 
% using hyperresolution
% not using sos strategy
% using positive unit paramodulation strategy
% using dynamic demodulation
% using ordered paramodulation
% using kb ordering for equality
% preferring bigger arities for lex ordering
% clause length limited to 3
% clause depth limited to 6
% seconds given: 20
% 
% 
% proof attempt stopped: sos exhausted
% 
% using hyperresolution
% not using sos strategy
% using positive unit paramodulation strategy
% using dynamic demodulation
% using ordered paramodulation
% using kb ordering for equality
% preferring bigger arities for lex ordering
% clause length limited to 3
% clause depth limited to 7
% seconds given: 20
% 
% 
% proof attempt stopped: time limit
% 
% old unit clauses discarded
% 
% using binary resolution
% not using sos strategy
% using unit strategy
% using dynamic demodulation
% using ordered paramodulation
% using kb ordering for equality
% preferring bigger arities for lex ordering
% using clause demodulation
% seconds given: 8
% 
% 
% proof attempt stopped: time limit
% 
% using binary resolution
% not using sos strategy
% using unit paramodulation strategy
% using unit strategy
% using dynamic demodulation
% using ordered paramodulation
% using kb ordering for equality
% preferring bigger arities for lex ordering
% using clause demodulation
% seconds given: 8
% 
% 
% proof attempt stopped: time limit
% 
% using binary resolution
% using first neg lit preferred strategy
% not using sos strategy
% using dynamic demodulation
% using ordered paramodulation
% using kb ordering for equality
% preferring bigger arities for lex ordering
% using clause demodulation
% clause length limited to 3
% clause depth limited to 5
% seconds given: 40
% 
% 
% proof attempt stopped: sos exhausted
% 
% using binary resolution
% using first neg lit preferred strategy
% not using sos strategy
% using dynamic demodulation
% using ordered paramodulation
% using kb ordering for equality
% preferring bigger arities for lex ordering
% using clause demodulation
% clause length limited to 3
% clause depth limited to 6
% seconds given: 40
% 
% 
% proof attempt stopped: sos exhausted
% 
% using binary resolution
% using first neg lit preferred strategy
% not using sos strategy
% using dynamic demodulation
% using ordered paramodulation
% using kb ordering for equality
% preferring bigger arities for lex ordering
% using clause demodulation
% clause length limited to 3
% clause depth limited to 7
% seconds given: 40
% 
% 
% proof attempt stopped: time limit
% 
% old unit clauses discarded
% 
% using binary resolution
% using first neg lit preferred strategy
% not using sos strategy
% using dynamic demodulation
% using ordered paramodulation
% using lex ordering for equality
% preferring bigger arities for lex ordering
% using clause demodulation
% clause length limited to 3
% clause depth limited to 5
% seconds given: 20
% 
% 
% proof attempt stopped: sos exhausted
% 
% using binary resolution
% using first neg lit preferred strategy
% not using sos strategy
% using dynamic demodulation
% using ordered paramodulation
% using lex ordering for equality
% preferring bigger arities for lex ordering
% using clause demodulation
% clause length limited to 3
% clause depth limited to 6
% seconds given: 20
% 
% 
% proof attempt stopped: sos exhausted
% 
% using binary resolution
% using first neg lit preferred strategy
% not using sos strategy
% using dynamic demodulation
% using ordered paramodulation
% using lex ordering for equality
% preferring bigger arities for lex ordering
% using clause demodulation
% clause length limited to 3
% clause depth limited to 7
% seconds given: 20
% 
% 
% proof attempt stopped: time limit
% 
% using binary resolution
% using sos strategy
% using dynamic demodulation
% using ordered paramodulation
% using kb ordering for equality
% preferring bigger arities for lex ordering
% using clause demodulation
% seconds given: 20
% 
% 
% proof attempt stopped: sos exhausted
% 
% using binary resolution
% using first neg lit preferred strategy
% not using sos strategy
% using dynamic demodulation
% using ordered paramodulation
% using kb ordering for equality
% preferring bigger arities for lex ordering
% using clause demodulation
% seconds given: 104
% 
% 
% proof attempt stopped: time limit
% 
% old unit clauses discarded
% 
% using binary resolution
% using first neg lit preferred strategy
% not using sos strategy
% using dynamic demodulation
% using ordered paramodulation
% using lex ordering for equality
% preferring bigger arities for lex ordering
% using clause demodulation
% seconds given: 68
% 
% 
% proof attempt stopped: time limit
% 
% old unit clauses discarded
% 
% using binary resolution
% using first neg lit preferred strategy
% not using sos strategy
% using dynamic demodulation
% using ordered paramodulation
% using first arg depth ordering for equality
% preferring bigger arities for lex ordering
% using clause demodulation
% seconds given: 40
% 
% 
% proof attempt stopped: time limit
% 
% using binary resolution
% using term-depth-order strategy
% not using sos strategy
% using dynamic demodulation
% using ordered paramodulation
% using kb ordering for equality
% preferring bigger arities for lex ordering
% using clause demodulation
% seconds given: 20
% 
% 
% proof attempt stopped: time limit
% 
% old unit clauses discarded
% 
% using binary resolution
% using first neg lit preferred strategy
% not using sos strategy
% using dynamic demodulation
% using ordered paramodulation
% using kb ordering for equality
% preferring smaller arities for lex ordering
% using clause demodulation
% seconds given: 32
% 
% 
% proof attempt stopped: time limit
% 
% using binary resolution
% using first neg lit preferred strategy
% not using sos strategy
% using dynamic demodulation
% using ordered paramodulation
% using lex ordering for equality
% preferring smaller arities for lex ordering
% using clause demodulation
% seconds given: 100
% 
% Wow, gandalf-wrapper got a signal XCPU
% Xcpu signal caught by Gandalf: stopping
% 
%------------------------------------------------------------------------------