TSTP Solution File: BOO029-1 by CiME---2.01

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CiME---2.01
% Problem  : BOO029-1 : TPTP v6.0.0. Released v2.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : tptp2X_and_run_cime %s

% Computer : n080.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.11.2.el6.x86_64
% CPULimit : 300s
% DateTime : Tue Jun 10 00:19:14 EDT 2014

% Result   : Unsatisfiable 1.84s
% Output   : Refutation 1.84s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : BOO029-1 : TPTP v6.0.0. Released v2.2.0.
% % Command  : tptp2X_and_run_cime %s
% % Computer : n080.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.11.2.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jun  5 18:10:38 CDT 2014
% % CPUTime  : 1.84 
% Processing problem /tmp/CiME_36586_n080.star.cs.uiowa.edu
% #verbose 1;
% let F = signature " add,multiply : AC; a,b : constant;  inverse : 1;";
% let X = vars "X Y Z";
% let Axioms = equations F X "
% X add (Y multiply (X multiply Z)) = X;
% ((X multiply Y) add (Y multiply Z)) add Y = Y;
% (X add Y) multiply (X add inverse(Y)) = X;
% X multiply (Y add (X add Z)) = X;
% ((X add Y) multiply (Y add Z)) multiply Y = Y;
% (X multiply Y) add (X multiply inverse(Y)) = X;
% ";
% 
% let s1 = status F "
% a lr_lex;
% b lr_lex;
% inverse lr_lex;
% add mul;
% multiply mul;
% ";
% 
% let p1 = precedence F "
% inverse > multiply > add > b > a";
% 
% let s2 = status F "
% a mul;
% b mul;
% inverse mul;
% add mul;
% multiply mul;
% ";
% 
% let p2 = precedence F "
% inverse > multiply > add > b = a";
% 
% let o_auto = AUTO Axioms;
% 
% let o = LEX o_auto (LEX (ACRPO s1 p1) (ACRPO s2 p2));
% 
% let Conjectures = equations F X " b add inverse(b) = a add inverse(a);"
% ;
% (*
% let Red_Axioms = normalize_equations Defining_rules Axioms;
% 
% let Red_Conjectures =  normalize_equations Defining_rules Conjectures;
% *)
% #time on;
% 
% let res = prove_conj_by_ordered_completion o Axioms Conjectures;
% 
% #time off;
% 
% 
% let status = if res then "unsatisfiable" else "satisfiable";
% #quit;
% Verbose level is now 1
% 
% F : signature = <signature>
% X : variable_set = <variable set>
% 
% Axioms : (F,X) equations = { (X multiply Y multiply Z) add X = X,
% (X multiply Y) add (Y multiply Z) add Y = Y,
% (inverse(Y) add X) multiply (X add Y) = X,
% (X add Y add Z) multiply X = X,
% (X add Y) multiply (Y add Z) multiply Y = Y,
% (inverse(Y) multiply X) add (X multiply Y) = X }
% (6 equation(s))
% s1 : F status = <status>
% p1 : F precedence = <precedence>
% s2 : F status = <status>
% p2 : F precedence = <precedence>
% o_auto : F term_ordering = <term ordering>
% o : F term_ordering = <term ordering>
% Conjectures : (F,X) equations = { b add inverse(b) = a add inverse(a) }
% (1 equation(s))
% time is now on
% 
% Initializing completion ...
% New rule produced : [1] (X multiply Y multiply Z) add X -> X
% Current number of equations to process: 0
% Current number of ordered equations: 5
% Current number of rules: 1
% New rule produced : [2] (X add Y add Z) multiply X -> X
% Current number of equations to process: 0
% Current number of ordered equations: 4
% Current number of rules: 2
% New rule produced : [3] (inverse(Y) multiply X) add (X multiply Y) -> X
% Current number of equations to process: 0
% Current number of ordered equations: 3
% Current number of rules: 3
% New rule produced : [4] (inverse(Y) add X) multiply (X add Y) -> X
% Current number of equations to process: 0
% Current number of ordered equations: 2
% Current number of rules: 4
% New rule produced : [5] (X add Y) multiply (Y add Z) multiply Y -> Y
% Current number of equations to process: 0
% Current number of ordered equations: 1
% Current number of rules: 5
% New rule produced : [6] (X multiply Y) add (Y multiply Z) add Y -> Y
% Current number of equations to process: 0
% Current number of ordered equations: 0
% Current number of rules: 6
% New rule produced : [7] (X multiply Y) add X -> X
% Rule [1] (X multiply Y multiply Z) add X -> X collapsed.
% Rule [6] (X multiply Y) add (Y multiply Z) add Y -> Y collapsed.
% Current number of equations to process: 105
% Current number of ordered equations: 0
% Current number of rules: 5
% New rule produced : [8] (X add Y) multiply X -> X
% Rule [2] (X add Y add Z) multiply X -> X collapsed.
% Rule [5] (X add Y) multiply (Y add Z) multiply Y -> Y collapsed.
% Current number of equations to process: 153
% Current number of ordered equations: 0
% Current number of rules: 4
% New rule produced : [9] X add X -> X
% Current number of equations to process: 266
% Current number of ordered equations: 0
% Current number of rules: 5
% New rule produced : [10] X multiply X -> X
% Current number of equations to process: 328
% Current number of ordered equations: 0
% Current number of rules: 6
% New rule produced : [11] (inverse(Y) multiply X) add Y -> X add Y
% Current number of equations to process: 410
% Current number of ordered equations: 0
% Current number of rules: 7
% New rule produced : [12] (inverse(Y) add X) multiply Y -> X multiply Y
% Current number of equations to process: 409
% Current number of ordered equations: 0
% Current number of rules: 8
% New rule produced : [13] (X multiply Y) add inverse(X) -> inverse(X) add Y
% Current number of equations to process: 627
% Current number of ordered equations: 0
% Current number of rules: 9
% New rule produced :
% [14] (X add Y) multiply inverse(X) -> inverse(X) multiply Y
% Current number of equations to process: 626
% Current number of ordered equations: 0
% Current number of rules: 10
% New rule produced : [15] inverse(X) add X <-> inverse(Y) add X add Y
% The conjecture has been reduced. 
% Conjecture is now:
% a add b add inverse(a) = a add inverse(a)
% 
% Current number of equations to process: 625
% Current number of ordered equations: 1
% Current number of rules: 11
% New rule produced : [16] inverse(Y) add X add Y <-> inverse(X) add X
% Current number of equations to process: 625
% Current number of ordered equations: 0
% Current number of rules: 12
% Rule [15] inverse(X) add X <-> inverse(Y) add X add Y is composed into 
% [15] inverse(X) add X <-> inverse(Y) add Y
% New rule produced : [17] inverse(X) add X add Y -> inverse(X) add X
% Rule [16] inverse(Y) add X add Y <-> inverse(X) add X collapsed.
% The conjecture has been reduced. 
% Conjecture is now:
% Trivial
% 
% Current number of equations to process: 624
% Current number of ordered equations: 0
% Current number of rules: 12
% The current conjecture is true and the solution is the identity
% % SZS output start Refutation
% 
% The following 8 rules have been used:
% [1] 
% (X multiply Y multiply Z) add X -> X; trace = in the starting set
% [2] (X add Y add Z) multiply X -> X; trace = in the starting set
% [3] (inverse(Y) multiply X) add (X multiply Y) -> X; trace = in the starting set
% [7] (X multiply Y) add X -> X; trace = Cp of 2 and 1
% [8] (X add Y) multiply X -> X; trace = Cp of 3 and 2
% [11] (inverse(Y) multiply X) add Y -> X add Y; trace = Cp of 7 and 3
% [15] inverse(X) add X <-> inverse(Y) add X add Y; trace = Cp of 11 and 3
% [17] inverse(X) add X add Y -> inverse(X) add X; trace = Cp of 11 and 8
% % SZS output end Refutation
% All conjectures have been proven
% 
% Execution time: 0.730000 sec
% res : bool = true
% time is now off
% 
% status : string = "unsatisfiable"
% % SZS status Unsatisfiable
% CiME interrupted
% 
% EOF
%------------------------------------------------------------------------------