TSTP Solution File: BOO021-1 by Moca---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Moca---0.1
% Problem  : BOO021-1 : TPTP v8.1.0. Released v2.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : moca.sh %s

% Computer : n017.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Thu Jul 14 23:46:31 EDT 2022

% Result   : Unsatisfiable 2.22s 2.36s
% Output   : Proof 2.22s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.11  % Problem  : BOO021-1 : TPTP v8.1.0. Released v2.2.0.
% 0.07/0.12  % Command  : moca.sh %s
% 0.12/0.33  % Computer : n017.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 600
% 0.12/0.33  % DateTime : Wed Jun  1 22:16:12 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 2.22/2.36  % SZS status Unsatisfiable
% 2.22/2.36  % SZS output start Proof
% 2.22/2.36  The input problem is unsatisfiable because
% 2.22/2.36  
% 2.22/2.36  [1] the following set of Horn clauses is unsatisfiable:
% 2.22/2.36  
% 2.22/2.36  	multiply(add(X, Y), Y) = Y
% 2.22/2.36  	multiply(X, add(Y, Z)) = add(multiply(Y, X), multiply(Z, X))
% 2.22/2.36  	add(X, inverse(X)) = n1
% 2.22/2.36  	add(multiply(X, Y), Y) = Y
% 2.22/2.36  	add(X, multiply(Y, Z)) = multiply(add(Y, X), add(Z, X))
% 2.22/2.36  	multiply(X, inverse(X)) = n0
% 2.22/2.36  	multiply(b, a) = multiply(a, b) ==> \bottom
% 2.22/2.36  
% 2.22/2.36  This holds because
% 2.22/2.36  
% 2.22/2.36  [2] the following E entails the following G (Claessen-Smallbone's transformation (2018)):
% 2.22/2.36  
% 2.22/2.36  E:
% 2.22/2.36  	add(X, inverse(X)) = n1
% 2.22/2.36  	add(X, multiply(Y, Z)) = multiply(add(Y, X), add(Z, X))
% 2.22/2.36  	add(multiply(X, Y), Y) = Y
% 2.22/2.36  	f1(multiply(a, b)) = false__
% 2.22/2.36  	f1(multiply(b, a)) = true__
% 2.22/2.36  	multiply(X, add(Y, Z)) = add(multiply(Y, X), multiply(Z, X))
% 2.22/2.36  	multiply(X, inverse(X)) = n0
% 2.22/2.36  	multiply(add(X, Y), Y) = Y
% 2.22/2.36  G:
% 2.22/2.36  	true__ = false__
% 2.22/2.36  
% 2.22/2.36  This holds because
% 2.22/2.36  
% 2.22/2.36  [3] E entails the following ordered TRS and the lhs and rhs of G join by the TRS:
% 2.22/2.36  
% 2.22/2.36  	add(inverse(n1), Y1) = add(Y1, inverse(n1))
% 2.22/2.36  	add(inverse(n1), multiply(Y2, inverse(Y0))) = multiply(inverse(Y0), add(Y0, Y2))
% 2.22/2.36  	add(multiply(Y0, inverse(Y2)), inverse(n1)) = multiply(inverse(Y2), add(Y0, Y2))
% 2.22/2.36  	multiply(X, add(Y, Z)) = add(multiply(Y, X), multiply(Z, X))
% 2.22/2.36  	multiply(Y0, Y2) = multiply(Y2, Y0)
% 2.22/2.36  	multiply(Y0, n1) = add(multiply(Y1, Y0), multiply(inverse(Y1), Y0))
% 2.22/2.36  	add(X, inverse(X)) -> n1
% 2.22/2.36  	add(Y0, n1) -> n1
% 2.22/2.36  	add(Y1, Y1) -> Y1
% 2.22/2.36  	add(Y1, inverse(n1)) -> Y1
% 2.22/2.36  	add(inverse(Y0), Y0) -> n1
% 2.22/2.36  	add(inverse(Y0), multiply(Y0, Y2)) -> add(Y2, inverse(Y0))
% 2.22/2.36  	add(inverse(n1), inverse(Y0)) -> inverse(Y0)
% 2.22/2.36  	add(multiply(X, Y), Y) -> Y
% 2.22/2.36  	add(multiply(Y1, Y0), multiply(inverse(Y1), Y0)) -> Y0
% 2.22/2.36  	add(multiply(Y1, n1), multiply(inverse(Y1), n1)) -> n1
% 2.22/2.36  	add(multiply(false__, inverse(n1)), multiply(inverse(false__), inverse(n1))) -> inverse(n1)
% 2.22/2.36  	add(n1, inverse(Y0)) -> n1
% 2.22/2.36  	add(n1, multiply(inverse(n1), Y1)) -> add(Y1, n1)
% 2.22/2.36  	f1(multiply(a, b)) -> false__
% 2.22/2.36  	f1(multiply(b, a)) -> true__
% 2.22/2.36  	inverse(inverse(n1)) -> n1
% 2.22/2.36  	multiply(X, inverse(X)) -> inverse(n1)
% 2.22/2.36  	multiply(Y1, Y1) -> Y1
% 2.22/2.36  	multiply(Y1, n1) -> Y1
% 2.22/2.36  	multiply(add(X, Y), Y) -> Y
% 2.22/2.36  	multiply(add(Y, X), add(Z, X)) -> add(X, multiply(Y, Z))
% 2.22/2.36  	multiply(add(Y0, inverse(Y2)), n1) -> add(inverse(Y2), multiply(Y0, Y2))
% 2.22/2.36  	multiply(n1, Y1) -> Y1
% 2.22/2.36  	n0 -> inverse(n1)
% 2.22/2.36  	true__ -> false__
% 2.22/2.36  with the LPO induced by
% 2.22/2.36  	b > a > f1 > multiply > add > n0 > inverse > n1 > true__ > false__
% 2.22/2.36  
% 2.22/2.36  % SZS output end Proof
% 2.22/2.36  
%------------------------------------------------------------------------------