TSTP Solution File: BOO017-2 by Gandalf---c-2.6

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Gandalf---c-2.6
% Problem  : BOO017-2 : TPTP v3.4.2. Released v1.0.0.
% Transfm  : add_equality:r
% Format   : otter:hypothesis:set(auto),clear(print_given)
% Command  : gandalf-wrapper -time %d %s

% Computer : art09.cs.miami.edu
% Model    : i686 unknown
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 1000MB
% OS       : Linux 2.4.22-21mdk-i686-up-4GB
% CPULimit : 600s

% Result   : Unsatisfiable 0.0s
% Output   : Assurance 0.0s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 
% Gandalf c-2.6 r1 starting to prove: /home/graph/tptp/TSTP/PreparedTPTP/otter:hypothesis:set(auto),clear(print_given)---add_equality:r/BOO/BOO017-2+eq_r.in
% Using automatic strategy selection.
% Time limit in seconds: 600
% 
% prove-all-passes started
% 
% detected problem class: ueq
% 
% strategies selected: 
% (binary-posweight-kb-big-order 60 #f 3 1)
% (binary-posweight-lex-big-order 30 #f 3 1)
% (binary 30 #t)
% (binary-posweight-kb-big-order 180 #f)
% (binary-posweight-lex-big-order 120 #f)
% (binary-posweight-firstpref-order 60 #f)
% (binary-posweight-kb-small-order 60 #f)
% (binary-posweight-lex-small-order 60 #f)
% 
% 
% ********* EMPTY CLAUSE DERIVED *********
% 
% 
% timer checkpoints: c(17,40,0,34,0,0)
% 
% 
% START OF PROOF
% 18 [] equal(X,X).
% 19 [] equal(add(X,Y),add(Y,X)).
% 20 [] equal(multiply(X,Y),multiply(Y,X)).
% 21 [] equal(add(multiply(X,Y),Z),multiply(add(X,Z),add(Y,Z))).
% 23 [] equal(multiply(add(X,Y),Z),add(multiply(X,Z),multiply(Y,Z))).
% 25 [] equal(add(X,inverse(X)),multiplicative_identity).
% 27 [] equal(multiply(X,inverse(X)),additive_identity).
% 30 [] equal(multiply(multiplicative_identity,X),X).
% 31 [] equal(add(X,additive_identity),X).
% 32 [] equal(add(additive_identity,X),X).
% 33 [] equal(add(x,y),z).
% 34 [] -equal(multiply(x,z),x).
% 35 [para:25.1.1,32.1.1] equal(multiplicative_identity,inverse(additive_identity)).
% 36 [para:27.1.1,30.1.1] equal(additive_identity,inverse(multiplicative_identity)).
% 37 [para:19.1.1,33.1.1] equal(add(y,x),z).
% 38 [para:20.1.1,34.1.1] -equal(multiply(z,x),x).
% 40 [para:32.1.1,21.1.2.2] equal(add(multiply(X,additive_identity),Y),multiply(add(X,Y),Y)).
% 43 [para:25.1.1,21.1.2.1,demod:30] equal(add(multiply(X,Y),inverse(X)),add(Y,inverse(X))).
% 51 [para:35.1.2,43.1.1.2,demod:35] equal(add(multiply(additive_identity,X),multiplicative_identity),add(X,multiplicative_identity)).
% 69 [para:20.1.1,51.1.1.1] equal(add(multiply(X,additive_identity),multiplicative_identity),add(X,multiplicative_identity)).
% 73 [para:27.1.1,23.1.2.1,demod:32] equal(multiply(add(X,Y),inverse(X)),multiply(Y,inverse(X))).
% 112 [para:37.1.1,40.1.2.1] equal(add(multiply(y,additive_identity),x),multiply(z,x)).
% 167 [para:36.1.2,73.1.1.2,demod:36] equal(multiply(add(multiplicative_identity,X),additive_identity),multiply(X,additive_identity)).
% 202 [para:19.1.1,167.1.1.1] equal(multiply(add(X,multiplicative_identity),additive_identity),multiply(X,additive_identity)).
% 208 [para:202.1.1,69.1.1.1,demod:69] equal(add(X,multiplicative_identity),add(add(X,multiplicative_identity),multiplicative_identity)).
% 227 [para:208.1.2,73.1.1.1,demod:30,27] equal(additive_identity,inverse(add(X,multiplicative_identity))).
% 229 [para:227.1.2,25.1.1.2,demod:31] equal(add(X,multiplicative_identity),multiplicative_identity).
% 232 [para:229.1.1,202.1.1.1,demod:30] equal(additive_identity,multiply(X,additive_identity)).
% 236 [para:232.1.2,112.1.1.1,demod:32] equal(x,multiply(z,x)).
% 247 [para:236.1.2,38.1.1,cut:18] contradiction
% END OF PROOF
% 
% Proof found by the following strategy:
% 
% using binary resolution
% using first neg lit preferred strategy
% not using sos strategy
% using dynamic demodulation
% using ordered paramodulation
% using kb ordering for equality
% preferring bigger arities for lex ordering
% using clause demodulation
% clause length limited to 1
% clause depth limited to 3
% seconds given: 60
% 
% 
% ***GANDALF_FOUND_A_REFUTATION***
% 
% Global statistics over all passes: 
% 
%  given clauses:    98
%  derived clauses:   3838
%  kept clauses:      212
%  kept size sum:     2160
%  kept mid-nuclei:   0
%  kept new demods:   153
%  forw unit-subs:    2428
%  forw double-subs: 0
%  forw overdouble-subs: 0
%  backward subs:     5
%  fast unit cutoff:  1
%  full unit cutoff:  0
%  dbl  unit cutoff:  0
%  real runtime  :  0.5
%  process. runtime:  0.4
% specific non-discr-tree subsumption statistics: 
%  tried:           0
%  length fails:    0
%  strength fails:  0
%  predlist fails:  0
%  aux str. fails:  0
%  by-lit fails:    0
%  full subs tried: 0
%  full subs fail:  0
% 
% ; program args: ("/home/graph/tptp/Systems/Gandalf---c-2.6/gandalf" "-time" "600" "/home/graph/tptp/TSTP/PreparedTPTP/otter:hypothesis:set(auto),clear(print_given)---add_equality:r/BOO/BOO017-2+eq_r.in")
% 
%------------------------------------------------------------------------------