TSTP Solution File: BOO015-2 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : BOO015-2 : TPTP v8.1.0. Bugfixed v1.0.1.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n029.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:47:36 EDT 2022

% Result   : Unsatisfiable 1.79s 2.00s
% Output   : Refutation 1.79s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   12
%            Number of leaves      :   16
% Syntax   : Number of clauses     :   77 (  77 unt;   0 nHn;  26 RR)
%            Number of literals    :   77 (  76 equ;   1 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    6 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    9 (   9 usr;   6 con; 0-2 aty)
%            Number of variables   :   91 (   6 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    inverse(c) != d,
    file('BOO015-2.p',unknown),
    [] ).

cnf(3,axiom,
    add(A,B) = add(B,A),
    file('BOO015-2.p',unknown),
    [] ).

cnf(4,axiom,
    multiply(A,B) = multiply(B,A),
    file('BOO015-2.p',unknown),
    [] ).

cnf(5,axiom,
    add(multiply(A,B),C) = multiply(add(A,C),add(B,C)),
    file('BOO015-2.p',unknown),
    [] ).

cnf(6,plain,
    multiply(add(A,B),add(C,B)) = add(multiply(A,C),B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[5])]),
    [iquote('copy,5,flip.1')] ).

cnf(12,axiom,
    multiply(add(A,B),C) = add(multiply(A,C),multiply(B,C)),
    file('BOO015-2.p',unknown),
    [] ).

cnf(14,axiom,
    multiply(A,add(B,C)) = add(multiply(A,B),multiply(A,C)),
    file('BOO015-2.p',unknown),
    [] ).

cnf(15,axiom,
    add(A,inverse(A)) = multiplicative_identity,
    file('BOO015-2.p',unknown),
    [] ).

cnf(17,axiom,
    add(inverse(A),A) = multiplicative_identity,
    file('BOO015-2.p',unknown),
    [] ).

cnf(20,axiom,
    multiply(A,inverse(A)) = additive_identity,
    file('BOO015-2.p',unknown),
    [] ).

cnf(22,axiom,
    multiply(inverse(A),A) = additive_identity,
    file('BOO015-2.p',unknown),
    [] ).

cnf(24,axiom,
    multiply(A,multiplicative_identity) = A,
    file('BOO015-2.p',unknown),
    [] ).

cnf(26,axiom,
    multiply(multiplicative_identity,A) = A,
    file('BOO015-2.p',unknown),
    [] ).

cnf(28,axiom,
    add(A,additive_identity) = A,
    file('BOO015-2.p',unknown),
    [] ).

cnf(30,axiom,
    add(additive_identity,A) = A,
    file('BOO015-2.p',unknown),
    [] ).

cnf(31,axiom,
    multiply(a,b) = c,
    file('BOO015-2.p',unknown),
    [] ).

cnf(33,axiom,
    add(inverse(a),inverse(b)) = d,
    file('BOO015-2.p',unknown),
    [] ).

cnf(37,plain,
    add(add(multiply(A,B),multiply(C,B)),add(multiply(A,C),multiply(C,C))) = add(multiply(A,B),C),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[6]),14,12,12]),
    [iquote('back_demod,6,demod,14,12,12')] ).

cnf(42,plain,
    multiply(b,a) = c,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[4,31])]),
    [iquote('para_into,4.1.1,31.1.1,flip.1')] ).

cnf(45,plain,
    add(multiply(additive_identity,A),multiply(B,A)) = multiply(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[12,30])]),
    [iquote('para_into,11.1.1.1,29.1.1,flip.1')] ).

cnf(49,plain,
    add(multiply(inverse(A),B),multiply(A,B)) = B,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[12,17]),26])]),
    [iquote('para_into,11.1.1.1,17.1.1,demod,26,flip.1')] ).

cnf(51,plain,
    add(multiply(A,B),multiply(inverse(A),B)) = B,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[12,15]),26])]),
    [iquote('para_into,11.1.1.1,15.1.1,demod,26,flip.1')] ).

cnf(53,plain,
    add(multiply(A,inverse(add(A,B))),multiply(B,inverse(add(A,B)))) = additive_identity,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[12,20])]),
    [iquote('para_into,11.1.1,19.1.1,flip.1')] ).

cnf(55,plain,
    add(multiply(A,B),multiply(A,C)) = add(multiply(B,A),multiply(C,A)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[12,4]),14]),
    [iquote('para_into,11.1.1,4.1.1,demod,14')] ).

cnf(57,plain,
    add(inverse(b),inverse(a)) = d,
    inference(para_into,[status(thm),theory(equality)],[33,3]),
    [iquote('para_into,33.1.1,3.1.1')] ).

cnf(59,plain,
    add(multiply(inverse(a),A),multiply(inverse(b),A)) = multiply(d,A),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[33,12])]),
    [iquote('para_from,33.1.1,11.1.1.1,flip.1')] ).

cnf(61,plain,
    add(multiply(inverse(b),A),multiply(inverse(a),A)) = multiply(d,A),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[57,12])]),
    [iquote('para_from,57.1.1,11.1.1.1,flip.1')] ).

cnf(68,plain,
    multiply(A,A) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[49,22]),30]),
    [iquote('para_into,49.1.1.1,21.1.1,demod,30')] ).

cnf(70,plain,
    multiply(A,inverse(inverse(A))) = inverse(inverse(A)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[49,20]),30]),
    [iquote('para_into,49.1.1.1,19.1.1,demod,30')] ).

cnf(71,plain,
    add(multiply(A,inverse(B)),multiply(B,A)) = A,
    inference(para_into,[status(thm),theory(equality)],[49,4]),
    [iquote('para_into,49.1.1.1,4.1.1')] ).

cnf(77,plain,
    multiply(inverse(inverse(A)),A) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[49,22]),28]),
    [iquote('para_into,49.1.1.2,21.1.1,demod,28')] ).

cnf(79,plain,
    add(multiply(inverse(add(A,B)),C),add(multiply(A,C),multiply(B,C))) = C,
    inference(para_into,[status(thm),theory(equality)],[49,12]),
    [iquote('para_into,49.1.1.2,11.1.1')] ).

cnf(83,plain,
    add(add(multiply(A,B),multiply(C,B)),add(multiply(A,C),C)) = add(multiply(A,B),C),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[37]),68]),
    [iquote('back_demod,37,demod,68')] ).

cnf(91,plain,
    add(multiply(A,inverse(b)),multiply(A,inverse(a))) = multiply(A,d),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[14,57])]),
    [iquote('para_into,13.1.1.2,57.1.1,flip.1')] ).

cnf(93,plain,
    add(multiply(A,multiply(inverse(B),C)),multiply(A,multiply(B,C))) = multiply(A,C),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[14,49])]),
    [iquote('para_into,13.1.1.2,49.1.1,flip.1')] ).

cnf(103,plain,
    add(multiply(A,B),multiply(A,inverse(B))) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[14,15]),24])]),
    [iquote('para_into,13.1.1.2,15.1.1,demod,24,flip.1')] ).

cnf(107,plain,
    add(multiply(inverse(add(A,B)),A),multiply(inverse(add(A,B)),B)) = additive_identity,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[14,22])]),
    [iquote('para_into,13.1.1,21.1.1,flip.1')] ).

cnf(132,plain,
    inverse(inverse(A)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[77,4]),70]),
    [iquote('para_into,77.1.1,4.1.1,demod,70')] ).

cnf(142,plain,
    multiply(additive_identity,A) = additive_identity,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[45,22]),28,22]),
    [iquote('para_into,45.1.1.2,21.1.1,demod,28,22')] ).

cnf(144,plain,
    multiply(A,additive_identity) = additive_identity,
    inference(para_into,[status(thm),theory(equality)],[142,4]),
    [iquote('para_into,141.1.1,4.1.1')] ).

cnf(167,plain,
    add(multiply(A,B),multiply(B,inverse(A))) = B,
    inference(para_into,[status(thm),theory(equality)],[51,4]),
    [iquote('para_into,51.1.1.2,4.1.1')] ).

cnf(169,plain,
    add(multiply(multiply(A,B),C),multiply(multiply(inverse(A),B),C)) = multiply(B,C),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[51,12])]),
    [iquote('para_from,51.1.1,11.1.1.1,flip.1')] ).

cnf(247,plain,
    add(A,multiply(A,B)) = add(A,multiply(B,A)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[55,68]),68]),
    [iquote('para_into,55.1.1.1,67.1.1,demod,68')] ).

cnf(253,plain,
    add(multiply(A,B),A) = add(multiply(B,A),A),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[55,68]),68]),
    [iquote('para_into,55.1.1.2,67.1.1,demod,68')] ).

cnf(329,plain,
    add(multiply(A,B),A) = add(A,multiply(B,A)),
    inference(para_into,[status(thm),theory(equality)],[247,3]),
    [iquote('para_into,247.1.1,3.1.1')] ).

cnf(332,plain,
    add(A,multiply(B,A)) = add(multiply(A,B),A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[329])]),
    [iquote('copy,329,flip.1')] ).

cnf(373,plain,
    add(multiply(multiply(A,B),inverse(add(multiply(B,A),A))),multiply(A,inverse(add(multiply(A,B),A)))) = additive_identity,
    inference(para_from,[status(thm),theory(equality)],[253,53]),
    [iquote('para_from,253.1.1,53.1.1.1.2.1')] ).

cnf(387,plain,
    add(multiply(inverse(a),inverse(b)),inverse(b)) = multiply(d,inverse(b)),
    inference(para_into,[status(thm),theory(equality)],[59,68]),
    [iquote('para_into,59.1.1.2,67.1.1')] ).

cnf(389,plain,
    multiply(inverse(a),b) = multiply(d,b),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[59,22]),28]),
    [iquote('para_into,59.1.1.2,21.1.1,demod,28')] ).

cnf(437,plain,
    add(multiply(inverse(b),inverse(a)),inverse(a)) = multiply(d,inverse(a)),
    inference(para_into,[status(thm),theory(equality)],[61,68]),
    [iquote('para_into,61.1.1.2,67.1.1')] ).

cnf(580,plain,
    add(multiply(A,B),B) = B,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[83,144]),144,28,30,144,30]),
    [iquote('para_into,83.1.1.1.1,143.1.1,demod,144,28,30,144,30')] ).

cnf(582,plain,
    add(multiply(A,B),A) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[83,142]),30,142,30,142,30]),
    [iquote('para_into,83.1.1.1.1,141.1.1,demod,30,142,30,142,30')] ).

cnf(607,plain,
    add(A,A) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[83,68]),580,580,580]),
    [iquote('para_into,83.1.1.1.2,67.1.1,demod,580,580,580')] ).

cnf(628,plain,
    add(multiply(A,B),inverse(A)) = add(B,inverse(A)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[83,51]),20,30])]),
    [iquote('para_into,83.1.1.1,51.1.1,demod,20,30,flip.1')] ).

cnf(659,plain,
    multiply(d,inverse(a)) = inverse(a),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[437]),580])]),
    [iquote('back_demod,437,demod,580,flip.1')] ).

cnf(661,plain,
    multiply(d,inverse(b)) = inverse(b),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[387]),580])]),
    [iquote('back_demod,387,demod,580,flip.1')] ).

cnf(663,plain,
    multiply(multiply(A,B),inverse(A)) = additive_identity,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[373]),580,582,20,28]),
    [iquote('back_demod,373,demod,580,582,20,28')] ).

cnf(670,plain,
    add(A,multiply(B,A)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[332]),582]),
    [iquote('back_demod,332,demod,582')] ).

cnf(716,plain,
    add(c,a) = a,
    inference(para_into,[status(thm),theory(equality)],[580,42]),
    [iquote('para_into,579.1.1.1,41.1.1')] ).

cnf(718,plain,
    add(c,b) = b,
    inference(para_into,[status(thm),theory(equality)],[580,31]),
    [iquote('para_into,579.1.1.1,31.1.1')] ).

cnf(749,plain,
    multiply(c,inverse(a)) = additive_identity,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[716,53]),716,20,28]),
    [iquote('para_from,715.1.1,53.1.1.2.2.1,demod,716,20,28')] ).

cnf(760,plain,
    multiply(c,inverse(b)) = additive_identity,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[718,53]),718,20,28]),
    [iquote('para_from,717.1.1,53.1.1.2.2.1,demod,718,20,28')] ).

cnf(795,plain,
    multiply(c,d) = additive_identity,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[749,91]),760,607])]),
    [iquote('para_from,749.1.1,91.1.1.2,demod,760,607,flip.1')] ).

cnf(819,plain,
    multiply(d,inverse(c)) = d,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[795,71]),28]),
    [iquote('para_from,795.1.1,71.1.1.2,demod,28')] ).

cnf(928,plain,
    add(multiply(A,multiply(inverse(d),inverse(c))),multiply(A,d)) = multiply(A,inverse(c)),
    inference(para_from,[status(thm),theory(equality)],[819,93]),
    [iquote('para_from,819.1.1,93.1.1.2.2')] ).

cnf(932,plain,
    add(multiply(inverse(add(d,A)),inverse(c)),add(d,multiply(A,inverse(c)))) = inverse(c),
    inference(para_from,[status(thm),theory(equality)],[819,79]),
    [iquote('para_from,819.1.1,79.1.1.2.1')] ).

cnf(1252,plain,
    add(d,inverse(a)) = d,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[659,167]),628]),
    [iquote('para_from,659.1.1,167.1.1.2,demod,628')] ).

cnf(1257,plain,
    multiply(inverse(d),inverse(a)) = additive_identity,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[1252,107]),1252,22,30]),
    [iquote('para_from,1251.1.1,107.1.1.2.1.1,demod,1252,22,30')] ).

cnf(1262,plain,
    add(d,inverse(b)) = d,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[661,167]),628]),
    [iquote('para_from,661.1.1,167.1.1.2,demod,628')] ).

cnf(1269,plain,
    multiply(inverse(d),inverse(b)) = additive_identity,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[1262,107]),1262,22,30]),
    [iquote('para_from,1261.1.1,107.1.1.2.1.1,demod,1262,22,30')] ).

cnf(1280,plain,
    multiply(inverse(d),a) = inverse(d),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[1257,103]),28]),
    [iquote('para_from,1257.1.1,103.1.1.2,demod,28')] ).

cnf(1284,plain,
    multiply(inverse(d),b) = inverse(d),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[1269,103]),28]),
    [iquote('para_from,1269.1.1,103.1.1.2,demod,28')] ).

cnf(1297,plain,
    multiply(multiply(d,b),a) = additive_identity,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[663,389]),132]),
    [iquote('para_into,663.1.1.1,389.1.1,demod,132')] ).

cnf(1316,plain,
    inverse(d) = c,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[1297,169]),1284,1280,30,42]),
    [iquote('para_from,1297.1.1,169.1.1.1,demod,1284,1280,30,42')] ).

cnf(1328,plain,
    multiply(A,inverse(c)) = multiply(A,d),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[928]),1316,20,144,30])]),
    [iquote('back_demod,928,demod,1316,20,144,30,flip.1')] ).

cnf(1329,plain,
    inverse(c) = d,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[932]),1328,1328,670,580])]),
    [iquote('back_demod,932,demod,1328,1328,670,580,flip.1')] ).

cnf(1331,plain,
    $false,
    inference(binary,[status(thm)],[1329,1]),
    [iquote('binary,1329.1,1.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : BOO015-2 : TPTP v8.1.0. Bugfixed v1.0.1.
% 0.07/0.13  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n029.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 02:45:29 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 1.70/1.92  ----- Otter 3.3f, August 2004 -----
% 1.70/1.92  The process was started by sandbox2 on n029.cluster.edu,
% 1.70/1.92  Wed Jul 27 02:45:29 2022
% 1.70/1.92  The command was "./otter".  The process ID is 2688.
% 1.70/1.92  
% 1.70/1.92  set(prolog_style_variables).
% 1.70/1.92  set(auto).
% 1.70/1.92     dependent: set(auto1).
% 1.70/1.92     dependent: set(process_input).
% 1.70/1.92     dependent: clear(print_kept).
% 1.70/1.92     dependent: clear(print_new_demod).
% 1.70/1.92     dependent: clear(print_back_demod).
% 1.70/1.92     dependent: clear(print_back_sub).
% 1.70/1.92     dependent: set(control_memory).
% 1.70/1.92     dependent: assign(max_mem, 12000).
% 1.70/1.92     dependent: assign(pick_given_ratio, 4).
% 1.70/1.92     dependent: assign(stats_level, 1).
% 1.70/1.92     dependent: assign(max_seconds, 10800).
% 1.70/1.92  clear(print_given).
% 1.70/1.92  
% 1.70/1.92  list(usable).
% 1.70/1.92  0 [] A=A.
% 1.70/1.92  0 [] add(X,Y)=add(Y,X).
% 1.70/1.92  0 [] multiply(X,Y)=multiply(Y,X).
% 1.70/1.92  0 [] add(multiply(X,Y),Z)=multiply(add(X,Z),add(Y,Z)).
% 1.70/1.92  0 [] add(X,multiply(Y,Z))=multiply(add(X,Y),add(X,Z)).
% 1.70/1.92  0 [] multiply(add(X,Y),Z)=add(multiply(X,Z),multiply(Y,Z)).
% 1.70/1.92  0 [] multiply(X,add(Y,Z))=add(multiply(X,Y),multiply(X,Z)).
% 1.70/1.92  0 [] add(X,inverse(X))=multiplicative_identity.
% 1.70/1.92  0 [] add(inverse(X),X)=multiplicative_identity.
% 1.70/1.92  0 [] multiply(X,inverse(X))=additive_identity.
% 1.70/1.92  0 [] multiply(inverse(X),X)=additive_identity.
% 1.70/1.92  0 [] multiply(X,multiplicative_identity)=X.
% 1.70/1.92  0 [] multiply(multiplicative_identity,X)=X.
% 1.70/1.92  0 [] add(X,additive_identity)=X.
% 1.70/1.92  0 [] add(additive_identity,X)=X.
% 1.70/1.92  0 [] multiply(a,b)=c.
% 1.70/1.92  0 [] add(inverse(a),inverse(b))=d.
% 1.70/1.92  0 [] inverse(c)!=d.
% 1.70/1.92  end_of_list.
% 1.70/1.92  
% 1.70/1.92  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.70/1.92  
% 1.70/1.92  All clauses are units, and equality is present; the
% 1.70/1.92  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.70/1.92  
% 1.70/1.92     dependent: set(knuth_bendix).
% 1.70/1.92     dependent: set(anl_eq).
% 1.70/1.92     dependent: set(para_from).
% 1.70/1.92     dependent: set(para_into).
% 1.70/1.92     dependent: clear(para_from_right).
% 1.70/1.92     dependent: clear(para_into_right).
% 1.70/1.92     dependent: set(para_from_vars).
% 1.70/1.92     dependent: set(eq_units_both_ways).
% 1.70/1.92     dependent: set(dynamic_demod_all).
% 1.70/1.92     dependent: set(dynamic_demod).
% 1.70/1.92     dependent: set(order_eq).
% 1.70/1.92     dependent: set(back_demod).
% 1.70/1.92     dependent: set(lrpo).
% 1.70/1.92  
% 1.70/1.92  ------------> process usable:
% 1.70/1.92  ** KEPT (pick-wt=4): 1 [] inverse(c)!=d.
% 1.70/1.92  
% 1.70/1.92  ------------> process sos:
% 1.70/1.92  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.70/1.92  ** KEPT (pick-wt=7): 3 [] add(A,B)=add(B,A).
% 1.70/1.92  ** KEPT (pick-wt=7): 4 [] multiply(A,B)=multiply(B,A).
% 1.70/1.92  ** KEPT (pick-wt=13): 6 [copy,5,flip.1] multiply(add(A,B),add(C,B))=add(multiply(A,C),B).
% 1.70/1.92  ---> New Demodulator: 7 [new_demod,6] multiply(add(A,B),add(C,B))=add(multiply(A,C),B).
% 1.70/1.92  ** KEPT (pick-wt=13): 9 [copy,8,flip.1] multiply(add(A,B),add(A,C))=add(A,multiply(B,C)).
% 1.70/1.92  ---> New Demodulator: 10 [new_demod,9] multiply(add(A,B),add(A,C))=add(A,multiply(B,C)).
% 1.70/1.92  ** KEPT (pick-wt=13): 11 [] multiply(add(A,B),C)=add(multiply(A,C),multiply(B,C)).
% 1.70/1.92  ---> New Demodulator: 12 [new_demod,11] multiply(add(A,B),C)=add(multiply(A,C),multiply(B,C)).
% 1.70/1.92  ** KEPT (pick-wt=13): 13 [] multiply(A,add(B,C))=add(multiply(A,B),multiply(A,C)).
% 1.70/1.92  ---> New Demodulator: 14 [new_demod,13] multiply(A,add(B,C))=add(multiply(A,B),multiply(A,C)).
% 1.70/1.92  ** KEPT (pick-wt=6): 15 [] add(A,inverse(A))=multiplicative_identity.
% 1.70/1.92  ---> New Demodulator: 16 [new_demod,15] add(A,inverse(A))=multiplicative_identity.
% 1.70/1.92  ** KEPT (pick-wt=6): 17 [] add(inverse(A),A)=multiplicative_identity.
% 1.70/1.92  ---> New Demodulator: 18 [new_demod,17] add(inverse(A),A)=multiplicative_identity.
% 1.70/1.92  ** KEPT (pick-wt=6): 19 [] multiply(A,inverse(A))=additive_identity.
% 1.70/1.92  ---> New Demodulator: 20 [new_demod,19] multiply(A,inverse(A))=additive_identity.
% 1.70/1.92  ** KEPT (pick-wt=6): 21 [] multiply(inverse(A),A)=additive_identity.
% 1.70/1.92  ---> New Demodulator: 22 [new_demod,21] multiply(inverse(A),A)=additive_identity.
% 1.70/1.92  ** KEPT (pick-wt=5): 23 [] multiply(A,multiplicative_identity)=A.
% 1.70/1.92  ---> New Demodulator: 24 [new_demod,23] multiply(A,multiplicative_identity)=A.
% 1.70/1.92  ** KEPT (pick-wt=5): 25 [] multiply(multiplicative_identity,A)=A.
% 1.70/1.92  ---> New Demodulator: 26 [new_demod,25] multiply(multiplicative_identity,A)=A.
% 1.70/1.92  ** KEPT (pick-wt=5): 27 [] add(A,additive_identity)=A.
% 1.70/1.92  ---> New Demodulator: 28 [new_demod,27] add(A,additive_identity)=A.
% 1.70/1.92  ** KEPT (pick-wt=5): 29 [] add(additive_identity,A)=A.
% 1.70/1.92  ---> New Demodulator: 30 [new_demod,29] add(additive_identity,A)=A.
% 1.70/1.92  ** KEPT (pick-wt=5): 31 [] multiply(a,b)=c.
% 1.79/2.00  ---> New Demodulator: 32 [new_demod,31] multiply(a,b)=c.
% 1.79/2.00  ** KEPT (pick-wt=7): 33 [] add(inverse(a),inverse(b))=d.
% 1.79/2.00  ---> New Demodulator: 34 [new_demod,33] add(inverse(a),inverse(b))=d.
% 1.79/2.00    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.79/2.00    Following clause subsumed by 3 during input processing: 0 [copy,3,flip.1] add(A,B)=add(B,A).
% 1.79/2.00    Following clause subsumed by 4 during input processing: 0 [copy,4,flip.1] multiply(A,B)=multiply(B,A).
% 1.79/2.00  >>>> Starting back demodulation with 7.
% 1.79/2.00  >>>> Starting back demodulation with 10.
% 1.79/2.00  >>>> Starting back demodulation with 12.
% 1.79/2.00      >> back demodulating 9 with 12.
% 1.79/2.00      >> back demodulating 6 with 12.
% 1.79/2.00  >>>> Starting back demodulation with 14.
% 1.79/2.00  >>>> Starting back demodulation with 16.
% 1.79/2.00  >>>> Starting back demodulation with 18.
% 1.79/2.00  >>>> Starting back demodulation with 20.
% 1.79/2.00  >>>> Starting back demodulation with 22.
% 1.79/2.00  >>>> Starting back demodulation with 24.
% 1.79/2.00  >>>> Starting back demodulation with 26.
% 1.79/2.00  >>>> Starting back demodulation with 28.
% 1.79/2.00  >>>> Starting back demodulation with 30.
% 1.79/2.00  >>>> Starting back demodulation with 32.
% 1.79/2.00  >>>> Starting back demodulation with 34.
% 1.79/2.00  >>>> Starting back demodulation with 36.
% 1.79/2.00  >>>> Starting back demodulation with 38.
% 1.79/2.00  
% 1.79/2.00  ======= end of input processing =======
% 1.79/2.00  
% 1.79/2.00  =========== start of search ===========
% 1.79/2.00  
% 1.79/2.00  
% 1.79/2.00  Resetting weight limit to 10.
% 1.79/2.00  
% 1.79/2.00  
% 1.79/2.00  Resetting weight limit to 10.
% 1.79/2.00  
% 1.79/2.00  sos_size=483
% 1.79/2.00  
% 1.79/2.00  -------- PROOF -------- 
% 1.79/2.00  
% 1.79/2.00  ----> UNIT CONFLICT at   0.07 sec ----> 1331 [binary,1329.1,1.1] $F.
% 1.79/2.00  
% 1.79/2.00  Length of proof is 60.  Level of proof is 11.
% 1.79/2.00  
% 1.79/2.00  ---------------- PROOF ----------------
% 1.79/2.00  % SZS status Unsatisfiable
% 1.79/2.00  % SZS output start Refutation
% See solution above
% 1.79/2.00  ------------ end of proof -------------
% 1.79/2.00  
% 1.79/2.00  
% 1.79/2.00  Search stopped by max_proofs option.
% 1.79/2.00  
% 1.79/2.00  
% 1.79/2.00  Search stopped by max_proofs option.
% 1.79/2.00  
% 1.79/2.00  ============ end of search ============
% 1.79/2.00  
% 1.79/2.00  -------------- statistics -------------
% 1.79/2.00  clauses given                130
% 1.79/2.00  clauses generated           3886
% 1.79/2.00  clauses kept                 780
% 1.79/2.00  clauses forward subsumed    2791
% 1.79/2.00  clauses back subsumed         16
% 1.79/2.00  Kbytes malloced             5859
% 1.79/2.00  
% 1.79/2.00  ----------- times (seconds) -----------
% 1.79/2.00  user CPU time          0.07          (0 hr, 0 min, 0 sec)
% 1.79/2.00  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.79/2.00  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.79/2.00  
% 1.79/2.00  That finishes the proof of the theorem.
% 1.79/2.00  
% 1.79/2.00  Process 2688 finished Wed Jul 27 02:45:31 2022
% 1.79/2.00  Otter interrupted
% 1.79/2.00  PROOF FOUND
%------------------------------------------------------------------------------