TSTP Solution File: BOO014-4 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : BOO014-4 : TPTP v8.1.0. Released v1.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n018.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 12:47:35 EDT 2022

% Result   : Unsatisfiable 1.90s 2.13s
% Output   : Refutation 1.90s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   14
%            Number of leaves      :    9
% Syntax   : Number of clauses     :   49 (  49 unt;   0 nHn;   2 RR)
%            Number of literals    :   49 (  48 equ;   1 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    6 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   4 con; 0-2 aty)
%            Number of variables   :   89 (  11 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    inverse(add(a,b)) != multiply(inverse(a),inverse(b)),
    file('BOO014-4.p',unknown),
    [] ).

cnf(3,axiom,
    add(A,B) = add(B,A),
    file('BOO014-4.p',unknown),
    [] ).

cnf(4,axiom,
    multiply(A,B) = multiply(B,A),
    file('BOO014-4.p',unknown),
    [] ).

cnf(5,axiom,
    add(A,multiply(B,C)) = multiply(add(A,B),add(A,C)),
    file('BOO014-4.p',unknown),
    [] ).

cnf(6,plain,
    multiply(add(A,B),add(A,C)) = add(A,multiply(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[5])]),
    [iquote('copy,5,flip.1')] ).

cnf(9,axiom,
    multiply(A,add(B,C)) = add(multiply(A,B),multiply(A,C)),
    file('BOO014-4.p',unknown),
    [] ).

cnf(11,axiom,
    add(A,additive_identity) = A,
    file('BOO014-4.p',unknown),
    [] ).

cnf(13,axiom,
    multiply(A,multiplicative_identity) = A,
    file('BOO014-4.p',unknown),
    [] ).

cnf(14,axiom,
    add(A,inverse(A)) = multiplicative_identity,
    file('BOO014-4.p',unknown),
    [] ).

cnf(17,axiom,
    multiply(A,inverse(A)) = additive_identity,
    file('BOO014-4.p',unknown),
    [] ).

cnf(18,plain,
    add(multiply(add(A,B),A),multiply(add(A,B),C)) = add(A,multiply(B,C)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[6]),9]),
    [iquote('back_demod,6,demod,9')] ).

cnf(20,plain,
    add(inverse(A),A) = multiplicative_identity,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[3,14])]),
    [iquote('para_into,3.1.1,14.1.1,flip.1')] ).

cnf(23,plain,
    add(additive_identity,A) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[3,11])]),
    [iquote('para_into,3.1.1,10.1.1,flip.1')] ).

cnf(28,plain,
    multiply(inverse(A),A) = additive_identity,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[4,17])]),
    [iquote('para_into,4.1.1,16.1.1,flip.1')] ).

cnf(31,plain,
    add(multiply(A,additive_identity),multiply(A,B)) = multiply(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[9,23])]),
    [iquote('para_into,8.1.1.2,22.1.1,flip.1')] ).

cnf(33,plain,
    add(multiply(A,inverse(B)),multiply(A,B)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[9,20]),13])]),
    [iquote('para_into,8.1.1.2,20.1.1,demod,13,flip.1')] ).

cnf(39,plain,
    multiply(add(A,B),C) = add(multiply(C,A),multiply(C,B)),
    inference(para_into,[status(thm),theory(equality)],[9,4]),
    [iquote('para_into,8.1.1,4.1.1')] ).

cnf(40,plain,
    add(multiply(A,B),multiply(A,C)) = multiply(add(B,C),A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[39])]),
    [iquote('copy,39,flip.1')] ).

cnf(44,plain,
    add(multiply(inverse(add(A,B)),A),multiply(inverse(add(A,B)),B)) = additive_identity,
    inference(para_into,[status(thm),theory(equality)],[28,9]),
    [iquote('para_into,27.1.1,8.1.1')] ).

cnf(51,plain,
    add(multiply(A,A),multiply(A,B)) = add(A,multiply(additive_identity,B)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[18,11]),11]),
    [iquote('para_into,18.1.1.1.1,10.1.1,demod,11')] ).

cnf(64,plain,
    add(multiply(add(A,B),A),add(A,B)) = add(A,B),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[18,13]),13]),
    [iquote('para_into,18.1.1.2,12.1.1,demod,13')] ).

cnf(80,plain,
    multiply(inverse(inverse(A)),A) = inverse(inverse(A)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[33,28]),23]),
    [iquote('para_into,33.1.1.1,27.1.1,demod,23')] ).

cnf(82,plain,
    multiply(A,A) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[33,17]),23]),
    [iquote('para_into,33.1.1.1,16.1.1,demod,23')] ).

cnf(85,plain,
    multiply(A,inverse(inverse(A))) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[33,17]),11]),
    [iquote('para_into,33.1.1.2,16.1.1,demod,11')] ).

cnf(87,plain,
    add(multiply(A,inverse(add(B,C))),add(multiply(A,B),multiply(A,C))) = A,
    inference(para_into,[status(thm),theory(equality)],[33,9]),
    [iquote('para_into,33.1.1.2,8.1.1')] ).

cnf(89,plain,
    add(multiply(A,inverse(B)),multiply(B,A)) = A,
    inference(para_into,[status(thm),theory(equality)],[33,4]),
    [iquote('para_into,33.1.1.2,4.1.1')] ).

cnf(96,plain,
    add(A,multiply(A,B)) = add(A,multiply(additive_identity,B)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[51]),82]),
    [iquote('back_demod,51,demod,82')] ).

cnf(120,plain,
    multiply(A,additive_identity) = additive_identity,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[31,17]),11,17]),
    [iquote('para_into,31.1.1.2,16.1.1,demod,11,17')] ).

cnf(122,plain,
    multiply(additive_identity,A) = additive_identity,
    inference(para_into,[status(thm),theory(equality)],[120,4]),
    [iquote('para_into,119.1.1,4.1.1')] ).

cnf(123,plain,
    add(A,multiply(A,B)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[96]),122,11]),
    [iquote('back_demod,96,demod,122,11')] ).

cnf(130,plain,
    multiply(add(A,B),A) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[120,18]),11,120,11]),
    [iquote('para_from,119.1.1,18.1.1.2,demod,11,120,11')] ).

cnf(140,plain,
    add(A,add(A,B)) = add(A,B),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[64]),130]),
    [iquote('back_demod,64,demod,130')] ).

cnf(147,plain,
    inverse(inverse(A)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[85,4]),80]),
    [iquote('para_into,85.1.1,4.1.1,demod,80')] ).

cnf(163,plain,
    add(A,multiply(B,A)) = A,
    inference(para_into,[status(thm),theory(equality)],[123,4]),
    [iquote('para_into,123.1.1.2,4.1.1')] ).

cnf(193,plain,
    add(add(A,B),A) = add(A,B),
    inference(para_from,[status(thm),theory(equality)],[130,123]),
    [iquote('para_from,129.1.1,123.1.1.2')] ).

cnf(197,plain,
    add(multiply(A,B),B) = B,
    inference(para_into,[status(thm),theory(equality)],[163,3]),
    [iquote('para_into,163.1.1,3.1.1')] ).

cnf(268,plain,
    multiply(inverse(A),multiply(B,A)) = additive_identity,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[44,197]),197,28,11]),
    [iquote('para_into,43.1.1.1.1.1,196.1.1,demod,197,28,11')] ).

cnf(271,plain,
    multiply(inverse(add(A,B)),A) = additive_identity,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[44,193]),9,44,193,23]),
    [iquote('para_into,43.1.1.1.1.1,192.1.1,demod,9,44,193,23')] ).

cnf(274,plain,
    multiply(inverse(add(A,B)),B) = additive_identity,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[44,140]),271,140,9,271,23,23]),
    [iquote('para_into,43.1.1.1.1.1,139.1.1,demod,271,140,9,271,23,23')] ).

cnf(288,plain,
    multiply(A,multiply(B,inverse(A))) = additive_identity,
    inference(para_into,[status(thm),theory(equality)],[268,147]),
    [iquote('para_into,268.1.1.1,147.1.1')] ).

cnf(358,plain,
    multiply(add(A,multiply(B,inverse(C))),C) = multiply(C,A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[288,40]),11])]),
    [iquote('para_from,288.1.1,40.1.1.2,demod,11,flip.1')] ).

cnf(519,plain,
    add(multiply(A,inverse(add(inverse(A),B))),multiply(A,B)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[87,17]),23]),
    [iquote('para_into,87.1.1.2.1,16.1.1,demod,23')] ).

cnf(608,plain,
    multiply(A,inverse(add(B,inverse(A)))) = inverse(add(B,inverse(A))),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[89,274]),23]),
    [iquote('para_into,89.1.1.1,274.1.1,demod,23')] ).

cnf(610,plain,
    multiply(A,inverse(add(inverse(A),B))) = inverse(add(inverse(A),B)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[89,271]),23]),
    [iquote('para_into,89.1.1.1,270.1.1,demod,23')] ).

cnf(613,plain,
    add(inverse(add(inverse(A),B)),multiply(A,B)) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[519]),610]),
    [iquote('back_demod,519,demod,610')] ).

cnf(1182,plain,
    inverse(add(inverse(A),inverse(B))) = multiply(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[358,613]),608])]),
    [iquote('para_into,358.1.1.1,613.1.1,demod,608,flip.1')] ).

cnf(1184,plain,
    inverse(add(A,inverse(B))) = multiply(inverse(A),B),
    inference(para_into,[status(thm),theory(equality)],[1182,147]),
    [iquote('para_into,1182.1.1.1.1,147.1.1')] ).

cnf(1188,plain,
    inverse(add(A,B)) = multiply(inverse(A),inverse(B)),
    inference(para_into,[status(thm),theory(equality)],[1184,147]),
    [iquote('para_into,1184.1.1.1.2,147.1.1')] ).

cnf(1190,plain,
    $false,
    inference(binary,[status(thm)],[1188,1]),
    [iquote('binary,1188.1,1.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : BOO014-4 : TPTP v8.1.0. Released v1.1.0.
% 0.11/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n018.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 02:39:31 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.90/2.13  ----- Otter 3.3f, August 2004 -----
% 1.90/2.13  The process was started by sandbox on n018.cluster.edu,
% 1.90/2.13  Wed Jul 27 02:39:31 2022
% 1.90/2.13  The command was "./otter".  The process ID is 2106.
% 1.90/2.13  
% 1.90/2.13  set(prolog_style_variables).
% 1.90/2.13  set(auto).
% 1.90/2.13     dependent: set(auto1).
% 1.90/2.13     dependent: set(process_input).
% 1.90/2.13     dependent: clear(print_kept).
% 1.90/2.13     dependent: clear(print_new_demod).
% 1.90/2.13     dependent: clear(print_back_demod).
% 1.90/2.13     dependent: clear(print_back_sub).
% 1.90/2.13     dependent: set(control_memory).
% 1.90/2.13     dependent: assign(max_mem, 12000).
% 1.90/2.13     dependent: assign(pick_given_ratio, 4).
% 1.90/2.13     dependent: assign(stats_level, 1).
% 1.90/2.13     dependent: assign(max_seconds, 10800).
% 1.90/2.13  clear(print_given).
% 1.90/2.13  
% 1.90/2.13  list(usable).
% 1.90/2.13  0 [] A=A.
% 1.90/2.13  0 [] add(X,Y)=add(Y,X).
% 1.90/2.13  0 [] multiply(X,Y)=multiply(Y,X).
% 1.90/2.13  0 [] add(X,multiply(Y,Z))=multiply(add(X,Y),add(X,Z)).
% 1.90/2.13  0 [] multiply(X,add(Y,Z))=add(multiply(X,Y),multiply(X,Z)).
% 1.90/2.13  0 [] add(X,additive_identity)=X.
% 1.90/2.13  0 [] multiply(X,multiplicative_identity)=X.
% 1.90/2.13  0 [] add(X,inverse(X))=multiplicative_identity.
% 1.90/2.13  0 [] multiply(X,inverse(X))=additive_identity.
% 1.90/2.13  0 [] inverse(add(a,b))!=multiply(inverse(a),inverse(b)).
% 1.90/2.13  end_of_list.
% 1.90/2.13  
% 1.90/2.13  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.90/2.13  
% 1.90/2.13  All clauses are units, and equality is present; the
% 1.90/2.13  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.90/2.13  
% 1.90/2.13     dependent: set(knuth_bendix).
% 1.90/2.13     dependent: set(anl_eq).
% 1.90/2.13     dependent: set(para_from).
% 1.90/2.13     dependent: set(para_into).
% 1.90/2.13     dependent: clear(para_from_right).
% 1.90/2.13     dependent: clear(para_into_right).
% 1.90/2.13     dependent: set(para_from_vars).
% 1.90/2.13     dependent: set(eq_units_both_ways).
% 1.90/2.13     dependent: set(dynamic_demod_all).
% 1.90/2.13     dependent: set(dynamic_demod).
% 1.90/2.13     dependent: set(order_eq).
% 1.90/2.13     dependent: set(back_demod).
% 1.90/2.13     dependent: set(lrpo).
% 1.90/2.13  
% 1.90/2.13  ------------> process usable:
% 1.90/2.13  ** KEPT (pick-wt=10): 1 [] inverse(add(a,b))!=multiply(inverse(a),inverse(b)).
% 1.90/2.13  
% 1.90/2.13  ------------> process sos:
% 1.90/2.13  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.90/2.13  ** KEPT (pick-wt=7): 3 [] add(A,B)=add(B,A).
% 1.90/2.13  ** KEPT (pick-wt=7): 4 [] multiply(A,B)=multiply(B,A).
% 1.90/2.13  ** KEPT (pick-wt=13): 6 [copy,5,flip.1] multiply(add(A,B),add(A,C))=add(A,multiply(B,C)).
% 1.90/2.13  ---> New Demodulator: 7 [new_demod,6] multiply(add(A,B),add(A,C))=add(A,multiply(B,C)).
% 1.90/2.13  ** KEPT (pick-wt=13): 8 [] multiply(A,add(B,C))=add(multiply(A,B),multiply(A,C)).
% 1.90/2.13  ---> New Demodulator: 9 [new_demod,8] multiply(A,add(B,C))=add(multiply(A,B),multiply(A,C)).
% 1.90/2.13  ** KEPT (pick-wt=5): 10 [] add(A,additive_identity)=A.
% 1.90/2.13  ---> New Demodulator: 11 [new_demod,10] add(A,additive_identity)=A.
% 1.90/2.13  ** KEPT (pick-wt=5): 12 [] multiply(A,multiplicative_identity)=A.
% 1.90/2.13  ---> New Demodulator: 13 [new_demod,12] multiply(A,multiplicative_identity)=A.
% 1.90/2.13  ** KEPT (pick-wt=6): 14 [] add(A,inverse(A))=multiplicative_identity.
% 1.90/2.13  ---> New Demodulator: 15 [new_demod,14] add(A,inverse(A))=multiplicative_identity.
% 1.90/2.13  ** KEPT (pick-wt=6): 16 [] multiply(A,inverse(A))=additive_identity.
% 1.90/2.13  ---> New Demodulator: 17 [new_demod,16] multiply(A,inverse(A))=additive_identity.
% 1.90/2.13    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.90/2.13    Following clause subsumed by 3 during input processing: 0 [copy,3,flip.1] add(A,B)=add(B,A).
% 1.90/2.13    Following clause subsumed by 4 during input processing: 0 [copy,4,flip.1] multiply(A,B)=multiply(B,A).
% 1.90/2.13  >>>> Starting back demodulation with 7.
% 1.90/2.13  >>>> Starting back demodulation with 9.
% 1.90/2.13      >> back demodulating 6 with 9.
% 1.90/2.13  >>>> Starting back demodulation with 11.
% 1.90/2.13  >>>> Starting back demodulation with 13.
% 1.90/2.13  >>>> Starting back demodulation with 15.
% 1.90/2.13  >>>> Starting back demodulation with 17.
% 1.90/2.13  >>>> Starting back demodulation with 19.
% 1.90/2.13  
% 1.90/2.13  ======= end of input processing =======
% 1.90/2.13  
% 1.90/2.13  =========== start of search ===========
% 1.90/2.13  
% 1.90/2.13  
% 1.90/2.13  Resetting weight limit to 11.
% 1.90/2.13  
% 1.90/2.13  
% 1.90/2.13  Resetting weight limit to 11.
% 1.90/2.13  
% 1.90/2.13  sos_size=363
% 1.90/2.13  
% 1.90/2.13  
% 1.90/2.13  Resetting weight limit to 10.
% 1.90/2.13  
% 1.90/2.13  
% 1.90/2.13  Resetting weight limit to 10.
% 1.90/2.13  
% 1.90/2.13  sos_size=386
% 1.90/2.13  
% 1.90/2.13  -------- PROOF -------- 
% 1.90/2.13  
% 1.90/2.13  ----> UNIT CONFLICT at   0.26 sec ----> 1190 [binary,1188.1,1.1] $F.
% 1.90/2.13  
% 1.90/2.13  Length of proof is 39.  Level of proof is 13.
% 1.90/2.13  
% 1.90/2.13  ---------------- PROOF ----------------
% 1.90/2.13  % SZS status Unsatisfiable
% 1.90/2.13  % SZS output start Refutation
% See solution above
% 1.90/2.13  ------------ end of proof -------------
% 1.90/2.13  
% 1.90/2.13  
% 1.90/2.13  Search stopped by max_proofs option.
% 1.90/2.13  
% 1.90/2.13  
% 1.90/2.13  Search stopped by max_proofs option.
% 1.90/2.13  
% 1.90/2.13  ============ end of search ============
% 1.90/2.13  
% 1.90/2.13  -------------- statistics -------------
% 1.90/2.13  clauses given                313
% 1.90/2.13  clauses generated          70361
% 1.90/2.13  clauses kept                 646
% 1.90/2.13  clauses forward subsumed   44270
% 1.90/2.13  clauses back subsumed          0
% 1.90/2.13  Kbytes malloced             5859
% 1.90/2.13  
% 1.90/2.13  ----------- times (seconds) -----------
% 1.90/2.13  user CPU time          0.26          (0 hr, 0 min, 0 sec)
% 1.90/2.13  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.90/2.13  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.90/2.13  
% 1.90/2.13  That finishes the proof of the theorem.
% 1.90/2.13  
% 1.90/2.13  Process 2106 finished Wed Jul 27 02:39:33 2022
% 1.90/2.13  Otter interrupted
% 1.90/2.13  PROOF FOUND
%------------------------------------------------------------------------------