TSTP Solution File: BOO010-2 by EQP---0.9e

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : EQP---0.9e
% Problem  : BOO010-2 : TPTP v8.1.0. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : tptp2X_and_run_eqp %s

% Computer : n022.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Thu Jul 14 23:37:05 EDT 2022

% Result   : Unsatisfiable 0.70s 1.10s
% Output   : Refutation 0.70s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    9
%            Number of leaves      :   12
% Syntax   : Number of clauses     :   30 (  30 unt;   0 nHn;   3 RR)
%            Number of literals    :   30 (   0 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    4 (   2 avg)
%            Number of predicates  :    2 (   1 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   4 con; 0-2 aty)
%            Number of variables   :   49 (   2 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,plain,
    equal(add(A,B),add(B,A)),
    file('BOO010-2.p',unknown),
    [] ).

cnf(2,plain,
    equal(multiply(A,B),multiply(B,A)),
    file('BOO010-2.p',unknown),
    [] ).

cnf(4,plain,
    equal(multiply(add(A,B),add(A,C)),add(A,multiply(B,C))),
    inference(flip,[status(thm),theory(equality)],[1]),
    [iquote('flip(1)')] ).

cnf(5,plain,
    equal(multiply(add(A,B),C),add(multiply(A,C),multiply(B,C))),
    file('BOO010-2.p',unknown),
    [] ).

cnf(6,plain,
    equal(add(multiply(A,add(A,B)),multiply(C,add(A,B))),add(A,multiply(C,B))),
    inference(demod,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[4]),5]),
    [iquote('back_demod(4),demod([5])')] ).

cnf(8,plain,
    equal(multiply(A,add(B,C)),add(multiply(A,B),multiply(A,C))),
    file('BOO010-2.p',unknown),
    [] ).

cnf(10,plain,
    equal(add(add(multiply(A,A),multiply(A,B)),add(multiply(C,A),multiply(C,B))),add(A,multiply(C,B))),
    inference(demod,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[6]),8,8]),
    [iquote('back_demod(6),demod([8,8])')] ).

cnf(11,plain,
    equal(add(A,inverse(A)),multiplicative_identity),
    file('BOO010-2.p',unknown),
    [] ).

cnf(13,plain,
    equal(multiply(A,inverse(A)),additive_identity),
    file('BOO010-2.p',unknown),
    [] ).

cnf(14,plain,
    equal(multiply(inverse(A),A),additive_identity),
    file('BOO010-2.p',unknown),
    [] ).

cnf(15,plain,
    equal(multiply(A,multiplicative_identity),A),
    file('BOO010-2.p',unknown),
    [] ).

cnf(16,plain,
    equal(multiply(multiplicative_identity,A),A),
    file('BOO010-2.p',unknown),
    [] ).

cnf(17,plain,
    equal(add(A,additive_identity),A),
    file('BOO010-2.p',unknown),
    [] ).

cnf(18,plain,
    equal(add(additive_identity,A),A),
    file('BOO010-2.p',unknown),
    [] ).

cnf(19,plain,
    ~ equal(add(a,multiply(a,b)),a),
    file('BOO010-2.p',unknown),
    [] ).

cnf(21,plain,
    equal(add(multiply(A,B),multiply(C,B)),add(multiply(B,A),multiply(B,C))),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[5,2]),8]),
    [iquote('para(5,2),demod([8])')] ).

cnf(55,plain,
    equal(add(multiply(A,B),multiply(inverse(A),B)),B),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[11,5]),16]),1]),
    [iquote('para(11,5),demod([16]),flip(1)')] ).

cnf(56,plain,
    equal(add(multiply(A,B),multiply(A,inverse(B))),A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[11,8]),15]),1]),
    [iquote('para(11,8),demod([15]),flip(1)')] ).

cnf(65,plain,
    equal(add(A,multiply(B,inverse(A))),add(multiply(A,A),B)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[13,10]),17,56]),1]),
    [iquote('para(13,10),demod([17,56]),flip(1)')] ).

cnf(95,plain,
    equal(multiply(A,inverse(inverse(A))),inverse(inverse(A))),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[13,55]),17]),
    [iquote('para(13,55),demod([17])')] ).

cnf(96,plain,
    equal(add(multiply(A,B),multiply(A,C)),add(multiply(C,A),multiply(B,A))),
    inference(para,[status(thm),theory(equality)],[21,1]),
    [iquote('para(21,1)')] ).

cnf(110,plain,
    equal(multiply(inverse(inverse(A)),A),inverse(inverse(A))),
    inference(para,[status(thm),theory(equality)],[2,95]),
    [iquote('para(2,95)')] ).

cnf(113,plain,
    equal(inverse(inverse(A)),A),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[14,55]),110,18]),
    [iquote('para(14,55),demod([110,18])')] ).

cnf(114,plain,
    equal(multiply(A,A),A),
    inference(demod,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[110]),113,113]),
    [iquote('back_demod(110),demod([113,113])')] ).

cnf(128,plain,
    equal(add(A,multiply(B,inverse(A))),add(A,B)),
    inference(demod,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[65]),114]),
    [iquote('back_demod(65),demod([114])')] ).

cnf(159,plain,
    equal(add(A,multiplicative_identity),multiplicative_identity),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[16,128]),11]),1]),
    [iquote('para(16,128),demod([11]),flip(1)')] ).

cnf(311,plain,
    equal(add(A,multiply(A,B)),add(multiply(B,A),A)),
    inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[15,96]),16]),
    [iquote('para(15,96),demod([16])')] ).

cnf(319,plain,
    ~ equal(add(multiply(b,a),a),a),
    inference(para,[status(thm),theory(equality)],[311,19]),
    [iquote('para(311,19)')] ).

cnf(327,plain,
    equal(add(multiply(A,B),B),B),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para,[status(thm),theory(equality)],[159,5]),16,16]),1]),
    [iquote('para(159,5),demod([16,16]),flip(1)')] ).

cnf(328,plain,
    $false,
    inference(conflict,[status(thm)],[327,319]),
    [iquote('conflict(327,319)')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.08/0.12  % Problem  : BOO010-2 : TPTP v8.1.0. Released v1.0.0.
% 0.08/0.12  % Command  : tptp2X_and_run_eqp %s
% 0.12/0.33  % Computer : n022.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 600
% 0.12/0.33  % DateTime : Wed Jun  1 18:17:22 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 0.70/1.10  ----- EQP 0.9e, May 2009 -----
% 0.70/1.10  The job began on n022.cluster.edu, Wed Jun  1 18:17:22 2022
% 0.70/1.10  The command was "./eqp09e".
% 0.70/1.10  
% 0.70/1.10  set(prolog_style_variables).
% 0.70/1.10  set(lrpo).
% 0.70/1.10  set(basic_paramod).
% 0.70/1.10  set(functional_subsume).
% 0.70/1.10  set(ordered_paramod).
% 0.70/1.10  set(prime_paramod).
% 0.70/1.10  set(para_pairs).
% 0.70/1.10  assign(pick_given_ratio,4).
% 0.70/1.10  clear(print_kept).
% 0.70/1.10  clear(print_new_demod).
% 0.70/1.10  clear(print_back_demod).
% 0.70/1.10  clear(print_given).
% 0.70/1.10  assign(max_mem,64000).
% 0.70/1.10  end_of_commands.
% 0.70/1.10  
% 0.70/1.10  Usable:
% 0.70/1.10  end_of_list.
% 0.70/1.10  
% 0.70/1.10  Sos:
% 0.70/1.10  0 (wt=-1) [] add(A,B) = add(B,A).
% 0.70/1.10  0 (wt=-1) [] multiply(A,B) = multiply(B,A).
% 0.70/1.10  0 (wt=-1) [] add(multiply(A,B),C) = multiply(add(A,C),add(B,C)).
% 0.70/1.10  0 (wt=-1) [] add(A,multiply(B,C)) = multiply(add(A,B),add(A,C)).
% 0.70/1.10  0 (wt=-1) [] multiply(add(A,B),C) = add(multiply(A,C),multiply(B,C)).
% 0.70/1.10  0 (wt=-1) [] multiply(A,add(B,C)) = add(multiply(A,B),multiply(A,C)).
% 0.70/1.10  0 (wt=-1) [] add(A,inverse(A)) = multiplicative_identity.
% 0.70/1.10  0 (wt=-1) [] add(inverse(A),A) = multiplicative_identity.
% 0.70/1.10  0 (wt=-1) [] multiply(A,inverse(A)) = additive_identity.
% 0.70/1.10  0 (wt=-1) [] multiply(inverse(A),A) = additive_identity.
% 0.70/1.10  0 (wt=-1) [] multiply(A,multiplicative_identity) = A.
% 0.70/1.10  0 (wt=-1) [] multiply(multiplicative_identity,A) = A.
% 0.70/1.10  0 (wt=-1) [] add(A,additive_identity) = A.
% 0.70/1.10  0 (wt=-1) [] add(additive_identity,A) = A.
% 0.70/1.10  0 (wt=-1) [] -(add(a,multiply(a,b)) = a).
% 0.70/1.10  end_of_list.
% 0.70/1.10  
% 0.70/1.10  Demodulators:
% 0.70/1.10  end_of_list.
% 0.70/1.10  
% 0.70/1.10  Passive:
% 0.70/1.10  end_of_list.
% 0.70/1.10  
% 0.70/1.10  Starting to process input.
% 0.70/1.10  
% 0.70/1.10  ** KEPT: 1 (wt=7) [] add(A,B) = add(B,A).
% 0.70/1.10  clause forward subsumed: 0 (wt=7) [flip(1)] add(B,A) = add(A,B).
% 0.70/1.10  
% 0.70/1.10  ** KEPT: 2 (wt=7) [] multiply(A,B) = multiply(B,A).
% 0.70/1.10  clause forward subsumed: 0 (wt=7) [flip(2)] multiply(B,A) = multiply(A,B).
% 0.70/1.10  
% 0.70/1.10  ** KEPT: 3 (wt=13) [flip(1)] multiply(add(A,B),add(C,B)) = add(multiply(A,C),B).
% 0.70/1.10  3 is a new demodulator.
% 0.70/1.10  
% 0.70/1.10  ** KEPT: 4 (wt=13) [flip(1)] multiply(add(A,B),add(A,C)) = add(A,multiply(B,C)).
% 0.70/1.10  4 is a new demodulator.
% 0.70/1.10  
% 0.70/1.10  ** KEPT: 5 (wt=13) [] multiply(add(A,B),C) = add(multiply(A,C),multiply(B,C)).
% 0.70/1.10  5 is a new demodulator.
% 0.70/1.10      -> 5 back demodulating 4.
% 0.70/1.10  
% 0.70/1.10  ** KEPT: 6 (wt=17) [back_demod(4),demod([5])] add(multiply(A,add(A,B)),multiply(C,add(A,B))) = add(A,multiply(C,B)).
% 0.70/1.10  6 is a new demodulator.
% 0.70/1.10      -> 5 back demodulating 3.
% 0.70/1.10  
% 0.70/1.10  ** KEPT: 7 (wt=17) [back_demod(3),demod([5])] add(multiply(A,add(B,C)),multiply(C,add(B,C))) = add(multiply(A,B),C).
% 0.70/1.10  7 is a new demodulator.
% 0.70/1.10  
% 0.70/1.10  ** KEPT: 8 (wt=13) [] multiply(A,add(B,C)) = add(multiply(A,B),multiply(A,C)).
% 0.70/1.10  8 is a new demodulator.
% 0.70/1.10      -> 8 back demodulating 7.
% 0.70/1.10  
% 0.70/1.10  ** KEPT: 9 (wt=21) [back_demod(7),demod([8,8])] add(add(multiply(A,B),multiply(A,C)),add(multiply(C,B),multiply(C,C))) = add(multiply(A,B),C).
% 0.70/1.10  9 is a new demodulator.
% 0.70/1.10      -> 8 back demodulating 6.
% 0.70/1.10  
% 0.70/1.10  ** KEPT: 10 (wt=21) [back_demod(6),demod([8,8])] add(add(multiply(A,A),multiply(A,B)),add(multiply(C,A),multiply(C,B))) = add(A,multiply(C,B)).
% 0.70/1.10  10 is a new demodulator.
% 0.70/1.10  
% 0.70/1.10  ** KEPT: 11 (wt=6) [] add(A,inverse(A)) = multiplicative_identity.
% 0.70/1.10  11 is a new demodulator.
% 0.70/1.10  
% 0.70/1.10  ** KEPT: 12 (wt=6) [] add(inverse(A),A) = multiplicative_identity.
% 0.70/1.10  12 is a new demodulator.
% 0.70/1.10  
% 0.70/1.10  ** KEPT: 13 (wt=6) [] multiply(A,inverse(A)) = additive_identity.
% 0.70/1.10  13 is a new demodulator.
% 0.70/1.10  
% 0.70/1.10  ** KEPT: 14 (wt=6) [] multiply(inverse(A),A) = additive_identity.
% 0.70/1.10  14 is a new demodulator.
% 0.70/1.10  
% 0.70/1.10  ** KEPT: 15 (wt=5) [] multiply(A,multiplicative_identity) = A.
% 0.70/1.10  15 is a new demodulator.
% 0.70/1.10  
% 0.70/1.10  ** KEPT: 16 (wt=5) [] multiply(multiplicative_identity,A) = A.
% 0.70/1.10  16 is a new demodulator.
% 0.70/1.10  
% 0.70/1.10  ** KEPT: 17 (wt=5) [] add(A,additive_identity) = A.
% 0.70/1.10  17 is a new demodulator.
% 0.70/1.10  
% 0.70/1.10  ** KEPT: 18 (wt=5) [] add(additive_identity,A) = A.
% 0.70/1.10  18 is a new demodulator.
% 0.70/1.10  
% 0.70/1.10  ** KEPT: 19 (wt=7) [] -(add(a,multiply(a,b)) = a).
% 0.70/1.10  ---------------- PROOF FOUND ----------------
% 0.70/1.10  % SZS status Unsatisfiable
% 0.70/1.10  
% 0.70/1.10  
% 0.70/1.10  After processing input:
% 0.70/1.10  
% 0.70/1.10  Usable:
% 0.70/1.10  end_of_list.
% 0.70/1.10  
% 0.70/1.10  Sos:
% 0.70/1.10  15 (wt=5) [] multiply(A,multiplicative_identity) = A.
% 0.70/1.10  16 (wt=5) [] multiply(multiplicative_identity,A) = A.
% 0.70/1.10  17 (wt=5) [] add(A,additive_identity) = A.
% 0.70/1.10  18 (wt=5) [] add(additive_identity,A) = A.
% 0.70/1.10  11 (wt=6) [] add(A,inverse(A)) = multiplicative_identity.
% 0.70/1.10  12 (wt=6) [] add(inverse(A),A) = multiplicative_identity.
% 0.70/1.10  13 (wt=6) [] multiply(A,inverse(A)) = additive_identity.
% 0.70/1.10  14 (wt=6) [] multiply(inverse(A),A) = additive_identity.
% 0.70/1.10  1 (wt=7) [] add(A,B) = add(B,A).
% 0.70/1.10  2 (wt=7) [] multiply(A,B) = multiply(B,A).
% 0.70/1.10  19 (wt=7) [] -(add(a,multiply(a,b)) = a).
% 0.70/1.10  5 (wt=13) [] multiply(add(A,B),C) = add(multiply(A,C),multiply(B,C)).
% 0.70/1.10  8 (wt=13) [] multiply(A,add(B,C)) = add(multiply(A,B),multiply(A,C)).
% 0.70/1.10  9 (wt=21) [back_demod(7),demod([8,8])] add(add(multiply(A,B),multiply(A,C)),add(multiply(C,B),multiply(C,C))) = add(multiply(A,B),C).
% 0.70/1.10  10 (wt=21) [back_demod(6),demod([8,8])] add(add(multiply(A,A),multiply(A,B)),add(multiply(C,A),multiply(C,B))) = add(A,multiply(C,B)).
% 0.70/1.10  end_of_list.
% 0.70/1.10  
% 0.70/1.10  Demodulators:
% 0.70/1.10  5 (wt=13) [] multiply(add(A,B),C) = add(multiply(A,C),multiply(B,C)).
% 0.70/1.10  8 (wt=13) [] multiply(A,add(B,C)) = add(multiply(A,B),multiply(A,C)).
% 0.70/1.10  9 (wt=21) [back_demod(7),demod([8,8])] add(add(multiply(A,B),multiply(A,C)),add(multiply(C,B),multiply(C,C))) = add(multiply(A,B),C).
% 0.70/1.10  10 (wt=21) [back_demod(6),demod([8,8])] add(add(multiply(A,A),multiply(A,B)),add(multiply(C,A),multiply(C,B))) = add(A,multiply(C,B)).
% 0.70/1.10  11 (wt=6) [] add(A,inverse(A)) = multiplicative_identity.
% 0.70/1.10  12 (wt=6) [] add(inverse(A),A) = multiplicative_identity.
% 0.70/1.10  13 (wt=6) [] multiply(A,inverse(A)) = additive_identity.
% 0.70/1.10  14 (wt=6) [] multiply(inverse(A),A) = additive_identity.
% 0.70/1.10  15 (wt=5) [] multiply(A,multiplicative_identity) = A.
% 0.70/1.10  16 (wt=5) [] multiply(multiplicative_identity,A) = A.
% 0.70/1.10  17 (wt=5) [] add(A,additive_identity) = A.
% 0.70/1.10  18 (wt=5) [] add(additive_identity,A) = A.
% 0.70/1.10  end_of_list.
% 0.70/1.10  
% 0.70/1.10  Passive:
% 0.70/1.10  end_of_list.
% 0.70/1.10  
% 0.70/1.10  UNIT CONFLICT from 327 and 319 at   0.02 seconds.
% 0.70/1.10  
% 0.70/1.10  ---------------- PROOF ----------------
% 0.70/1.10  % SZS output start Refutation
% See solution above
% 0.70/1.10  ------------ end of proof -------------
% 0.70/1.10  
% 0.70/1.10  
% 0.70/1.10  ------------- memory usage ------------
% 0.70/1.10  Memory dynamically allocated (tp_alloc): 488.
% 0.70/1.10    type (bytes each)        gets      frees     in use      avail      bytes
% 0.70/1.10  sym_ent (  96)               58          0         58          0      5.4 K
% 0.70/1.10  term (  16)               25650      18869       6781         40    131.9 K
% 0.70/1.10  gen_ptr (   8)            32803       6895      25908         35    202.7 K
% 0.70/1.10  context ( 808)            22207      22205          2          3      3.9 K
% 0.70/1.10  trail (  12)               5627       5627          0          4      0.0 K
% 0.70/1.10  bt_node (  68)             8840       8837          3         12      1.0 K
% 0.70/1.10  ac_position (285432)          0          0          0          0      0.0 K
% 0.70/1.10  ac_match_pos (14044)          0          0          0          0      0.0 K
% 0.70/1.10  ac_match_free_vars_pos (4020)
% 0.70/1.10                                0          0          0          0      0.0 K
% 0.70/1.10  discrim (  12)             5164       1508       3656         90     43.9 K
% 0.70/1.10  flat (  40)               47530      47530          0         47      1.8 K
% 0.70/1.10  discrim_pos (  12)         1699       1699          0          1      0.0 K
% 0.70/1.10  fpa_head (  12)             884          0        884          0     10.4 K
% 0.70/1.10  fpa_tree (  28)             878        878          0         17      0.5 K
% 0.70/1.10  fpa_pos (  36)              519        519          0          1      0.0 K
% 0.70/1.10  literal (  12)             1534       1207        327          1      3.8 K
% 0.70/1.10  clause (  24)              1534       1207        327          1      7.7 K
% 0.70/1.10  list (  12)                 251        195         56          4      0.7 K
% 0.70/1.10  list_pos (  20)            1361        434        927          8     18.3 K
% 0.70/1.10  pair_index (   40)              2          0          2          0      0.1 K
% 0.70/1.10  
% 0.70/1.10  -------------- statistics -------------
% 0.70/1.10  Clauses input                 15
% 0.70/1.10    Usable input                   0
% 0.70/1.10    Sos input                     15
% 0.70/1.10    Demodulators input             0
% 0.70/1.10    Passive input                  0
% 0.70/1.10  
% 0.70/1.10  Processed BS (before search)  21
% 0.70/1.10  Forward subsumed BS            2
% 0.70/1.10  Kept BS                       19
% 0.70/1.10  New demodulators BS           16
% 0.70/1.10  Back demodulated BS            4
% 0.70/1.10  
% 0.70/1.10  Clauses or pairs given      1589
% 0.70/1.10  Clauses generated            958
% 0.70/1.10  Forward subsumed             650
% 0.70/1.10  Deleted by weight              0
% 0.70/1.10  Deleted by variable count      0
% 0.70/1.10  Kept                         308
% 0.70/1.10  New demodulators             176
% 0.70/1.10  Back demodulated              83
% 0.70/1.10  Ordered paramod prunes         0
% 0.70/1.10  Basic paramod prunes        2225
% 0.70/1.10  Prime paramod prunes         102
% 0.70/1.10  Semantic prunes                0
% 0.70/1.10  
% 0.70/1.10  Rewrite attmepts            9731
% 0.70/1.10  Rewrites                    1420
% 0.70/1.10  
% 0.70/1.10  FPA overloads                  0
% 0.70/1.10  FPA underloads                 0
% 0.70/1.10  
% 0.70/1.10  Usable size                    0
% 0.70/1.10  Sos size                     239
% 0.70/1.10  Demodulators size            123
% 0.70/1.10  Passive size                   0
% 0.70/1.10  Disabled size                 87
% 0.70/1.10  
% 0.70/1.10  Proofs found                   1
% 0.70/1.10  
% 0.70/1.10  ----------- times (seconds) ----------- Wed Jun  1 18:17:23 2022
% 0.70/1.10  
% 0.70/1.10  user CPU time             0.02   (0 hr, 0 min, 0 sec)
% 0.70/1.10  system CPU time           0.03   (0 hr, 0 min, 0 sec)
% 0.70/1.10  wall-clock time           1      (0 hr, 0 min, 1 sec)
% 0.70/1.10  input time                0.00
% 0.70/1.10  paramodulation time       0.01
% 0.70/1.10  demodulation time         0.00
% 0.70/1.10  orient time               0.00
% 0.70/1.10  weigh time                0.00
% 0.70/1.10  forward subsume time      0.00
% 0.70/1.10  back demod find time      0.00
% 0.70/1.10  conflict time             0.00
% 0.70/1.10  LRPO time                 0.00
% 0.70/1.10  store clause time         0.00
% 0.70/1.10  disable clause time       0.00
% 0.70/1.10  prime paramod time        0.00
% 0.70/1.10  semantics time            0.00
% 0.70/1.10  
% 0.70/1.10  EQP interrupted
%------------------------------------------------------------------------------