TSTP Solution File: ANA044-2 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : ANA044-2 : TPTP v8.1.2. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n003.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Aug 30 17:21:13 EDT 2023

% Result   : Unsatisfiable 0.20s 0.39s
% Output   : Proof 0.20s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : ANA044-2 : TPTP v8.1.2. Released v3.2.0.
% 0.00/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n003.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Fri Aug 25 18:41:08 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 0.20/0.39  Command-line arguments: --lhs-weight 9 --flip-ordering --complete-subsets --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 0.20/0.39  
% 0.20/0.39  % SZS status Unsatisfiable
% 0.20/0.39  
% 0.20/0.39  % SZS output start Proof
% 0.20/0.39  Take the following subset of the input axioms:
% 0.20/0.40    fof(cls_OrderedGroup_Oabs__of__nonneg_0, axiom, ![T_a, V_y]: (~class_OrderedGroup_Olordered__ab__group__abs(T_a) | (~c_lessequals(c_0, V_y, T_a) | c_HOL_Oabs(V_y, T_a)=V_y))).
% 0.20/0.40    fof(cls_Ring__and__Field_Omult__nonneg__nonneg_0, axiom, ![V_b, V_a, T_a2]: (~class_Ring__and__Field_Opordered__cancel__semiring(T_a2) | (~c_lessequals(c_0, V_b, T_a2) | (~c_lessequals(c_0, V_a, T_a2) | c_lessequals(c_0, c_times(V_a, V_b, T_a2), T_a2))))).
% 0.20/0.40    fof(cls_conjecture_0, negated_conjecture, ![V_U, V_V]: c_lessequals(c_0, v_l(V_U, V_V), t_b)).
% 0.20/0.40    fof(cls_conjecture_1, negated_conjecture, ![V_U2]: c_lessequals(c_0, v_h(V_U2), t_b)).
% 0.20/0.40    fof(cls_conjecture_3, negated_conjecture, c_times(v_l(v_x, v_xa), v_h(v_k(v_x, v_xa)), t_b)!=c_HOL_Oabs(c_times(v_l(v_x, v_xa), v_h(v_k(v_x, v_xa)), t_b), t_b)).
% 0.20/0.40    fof(clsrel_Ring__and__Field_Oordered__idom_40, axiom, ![T]: (~class_Ring__and__Field_Oordered__idom(T) | class_Ring__and__Field_Opordered__cancel__semiring(T))).
% 0.20/0.40    fof(clsrel_Ring__and__Field_Oordered__idom_50, axiom, ![T2]: (~class_Ring__and__Field_Oordered__idom(T2) | class_OrderedGroup_Olordered__ab__group__abs(T2))).
% 0.20/0.40    fof(tfree_tcs, negated_conjecture, class_Ring__and__Field_Oordered__idom(t_b)).
% 0.20/0.40  
% 0.20/0.40  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.20/0.40  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.20/0.40  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.20/0.40    fresh(y, y, x1...xn) = u
% 0.20/0.40    C => fresh(s, t, x1...xn) = v
% 0.20/0.40  where fresh is a fresh function symbol and x1..xn are the free
% 0.20/0.40  variables of u and v.
% 0.20/0.40  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.20/0.40  input problem has no model of domain size 1).
% 0.20/0.40  
% 0.20/0.40  The encoding turns the above axioms into the following unit equations and goals:
% 0.20/0.40  
% 0.20/0.40  Axiom 1 (tfree_tcs): class_Ring__and__Field_Oordered__idom(t_b) = true.
% 0.20/0.40  Axiom 2 (clsrel_Ring__and__Field_Oordered__idom_40): fresh3(X, X, Y) = true.
% 0.20/0.40  Axiom 3 (clsrel_Ring__and__Field_Oordered__idom_50): fresh2(X, X, Y) = true.
% 0.20/0.40  Axiom 4 (cls_conjecture_1): c_lessequals(c_0, v_h(X), t_b) = true.
% 0.20/0.40  Axiom 5 (cls_OrderedGroup_Oabs__of__nonneg_0): fresh(X, X, Y, Z) = Z.
% 0.20/0.40  Axiom 6 (cls_OrderedGroup_Oabs__of__nonneg_0): fresh4(X, X, Y, Z) = c_HOL_Oabs(Z, Y).
% 0.20/0.40  Axiom 7 (clsrel_Ring__and__Field_Oordered__idom_40): fresh3(class_Ring__and__Field_Oordered__idom(X), true, X) = class_Ring__and__Field_Opordered__cancel__semiring(X).
% 0.20/0.40  Axiom 8 (clsrel_Ring__and__Field_Oordered__idom_50): fresh2(class_Ring__and__Field_Oordered__idom(X), true, X) = class_OrderedGroup_Olordered__ab__group__abs(X).
% 0.20/0.40  Axiom 9 (cls_conjecture_0): c_lessequals(c_0, v_l(X, Y), t_b) = true.
% 0.20/0.40  Axiom 10 (cls_Ring__and__Field_Omult__nonneg__nonneg_0): fresh7(X, X, Y, Z, W) = true.
% 0.20/0.40  Axiom 11 (cls_Ring__and__Field_Omult__nonneg__nonneg_0): fresh5(X, X, Y, Z, W) = c_lessequals(c_0, c_times(W, Z, Y), Y).
% 0.20/0.40  Axiom 12 (cls_OrderedGroup_Oabs__of__nonneg_0): fresh4(class_OrderedGroup_Olordered__ab__group__abs(X), true, X, Y) = fresh(c_lessequals(c_0, Y, X), true, X, Y).
% 0.20/0.40  Axiom 13 (cls_Ring__and__Field_Omult__nonneg__nonneg_0): fresh6(X, X, Y, Z, W) = fresh7(c_lessequals(c_0, Z, Y), true, Y, Z, W).
% 0.20/0.40  Axiom 14 (cls_Ring__and__Field_Omult__nonneg__nonneg_0): fresh6(class_Ring__and__Field_Opordered__cancel__semiring(X), true, X, Y, Z) = fresh5(c_lessequals(c_0, Z, X), true, X, Y, Z).
% 0.20/0.40  
% 0.20/0.40  Goal 1 (cls_conjecture_3): c_times(v_l(v_x, v_xa), v_h(v_k(v_x, v_xa)), t_b) = c_HOL_Oabs(c_times(v_l(v_x, v_xa), v_h(v_k(v_x, v_xa)), t_b), t_b).
% 0.20/0.40  Proof:
% 0.20/0.40    c_times(v_l(v_x, v_xa), v_h(v_k(v_x, v_xa)), t_b)
% 0.20/0.40  = { by axiom 5 (cls_OrderedGroup_Oabs__of__nonneg_0) R->L }
% 0.20/0.40    fresh(true, true, t_b, c_times(v_l(v_x, v_xa), v_h(v_k(v_x, v_xa)), t_b))
% 0.20/0.40  = { by axiom 10 (cls_Ring__and__Field_Omult__nonneg__nonneg_0) R->L }
% 0.20/0.40    fresh(fresh7(true, true, t_b, v_h(v_k(v_x, v_xa)), v_l(v_x, v_xa)), true, t_b, c_times(v_l(v_x, v_xa), v_h(v_k(v_x, v_xa)), t_b))
% 0.20/0.40  = { by axiom 4 (cls_conjecture_1) R->L }
% 0.20/0.40    fresh(fresh7(c_lessequals(c_0, v_h(v_k(v_x, v_xa)), t_b), true, t_b, v_h(v_k(v_x, v_xa)), v_l(v_x, v_xa)), true, t_b, c_times(v_l(v_x, v_xa), v_h(v_k(v_x, v_xa)), t_b))
% 0.20/0.40  = { by axiom 13 (cls_Ring__and__Field_Omult__nonneg__nonneg_0) R->L }
% 0.20/0.40    fresh(fresh6(true, true, t_b, v_h(v_k(v_x, v_xa)), v_l(v_x, v_xa)), true, t_b, c_times(v_l(v_x, v_xa), v_h(v_k(v_x, v_xa)), t_b))
% 0.20/0.40  = { by axiom 2 (clsrel_Ring__and__Field_Oordered__idom_40) R->L }
% 0.20/0.40    fresh(fresh6(fresh3(true, true, t_b), true, t_b, v_h(v_k(v_x, v_xa)), v_l(v_x, v_xa)), true, t_b, c_times(v_l(v_x, v_xa), v_h(v_k(v_x, v_xa)), t_b))
% 0.20/0.40  = { by axiom 1 (tfree_tcs) R->L }
% 0.20/0.40    fresh(fresh6(fresh3(class_Ring__and__Field_Oordered__idom(t_b), true, t_b), true, t_b, v_h(v_k(v_x, v_xa)), v_l(v_x, v_xa)), true, t_b, c_times(v_l(v_x, v_xa), v_h(v_k(v_x, v_xa)), t_b))
% 0.20/0.40  = { by axiom 7 (clsrel_Ring__and__Field_Oordered__idom_40) }
% 0.20/0.40    fresh(fresh6(class_Ring__and__Field_Opordered__cancel__semiring(t_b), true, t_b, v_h(v_k(v_x, v_xa)), v_l(v_x, v_xa)), true, t_b, c_times(v_l(v_x, v_xa), v_h(v_k(v_x, v_xa)), t_b))
% 0.20/0.40  = { by axiom 14 (cls_Ring__and__Field_Omult__nonneg__nonneg_0) }
% 0.20/0.40    fresh(fresh5(c_lessequals(c_0, v_l(v_x, v_xa), t_b), true, t_b, v_h(v_k(v_x, v_xa)), v_l(v_x, v_xa)), true, t_b, c_times(v_l(v_x, v_xa), v_h(v_k(v_x, v_xa)), t_b))
% 0.20/0.40  = { by axiom 9 (cls_conjecture_0) }
% 0.20/0.40    fresh(fresh5(true, true, t_b, v_h(v_k(v_x, v_xa)), v_l(v_x, v_xa)), true, t_b, c_times(v_l(v_x, v_xa), v_h(v_k(v_x, v_xa)), t_b))
% 0.20/0.40  = { by axiom 11 (cls_Ring__and__Field_Omult__nonneg__nonneg_0) }
% 0.20/0.40    fresh(c_lessequals(c_0, c_times(v_l(v_x, v_xa), v_h(v_k(v_x, v_xa)), t_b), t_b), true, t_b, c_times(v_l(v_x, v_xa), v_h(v_k(v_x, v_xa)), t_b))
% 0.20/0.40  = { by axiom 12 (cls_OrderedGroup_Oabs__of__nonneg_0) R->L }
% 0.20/0.40    fresh4(class_OrderedGroup_Olordered__ab__group__abs(t_b), true, t_b, c_times(v_l(v_x, v_xa), v_h(v_k(v_x, v_xa)), t_b))
% 0.20/0.40  = { by axiom 8 (clsrel_Ring__and__Field_Oordered__idom_50) R->L }
% 0.20/0.40    fresh4(fresh2(class_Ring__and__Field_Oordered__idom(t_b), true, t_b), true, t_b, c_times(v_l(v_x, v_xa), v_h(v_k(v_x, v_xa)), t_b))
% 0.20/0.40  = { by axiom 1 (tfree_tcs) }
% 0.20/0.40    fresh4(fresh2(true, true, t_b), true, t_b, c_times(v_l(v_x, v_xa), v_h(v_k(v_x, v_xa)), t_b))
% 0.20/0.40  = { by axiom 3 (clsrel_Ring__and__Field_Oordered__idom_50) }
% 0.20/0.40    fresh4(true, true, t_b, c_times(v_l(v_x, v_xa), v_h(v_k(v_x, v_xa)), t_b))
% 0.20/0.40  = { by axiom 6 (cls_OrderedGroup_Oabs__of__nonneg_0) }
% 0.20/0.40    c_HOL_Oabs(c_times(v_l(v_x, v_xa), v_h(v_k(v_x, v_xa)), t_b), t_b)
% 0.20/0.40  % SZS output end Proof
% 0.20/0.40  
% 0.20/0.40  RESULT: Unsatisfiable (the axioms are contradictory).
%------------------------------------------------------------------------------