TSTP Solution File: ALG176+1 by Twee---2.5.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.5.0
% Problem  : ALG176+1 : TPTP v8.2.0. Released v2.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee /export/starexec/sandbox2/benchmark/theBenchmark.p --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding

% Computer : n018.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Mon Jun 24 04:04:35 EDT 2024

% Result   : Theorem 0.19s 0.42s
% Output   : Proof 0.19s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.04/0.14  % Problem  : ALG176+1 : TPTP v8.2.0. Released v2.7.0.
% 0.04/0.14  % Command  : parallel-twee /export/starexec/sandbox2/benchmark/theBenchmark.p --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding
% 0.12/0.35  % Computer : n018.cluster.edu
% 0.12/0.35  % Model    : x86_64 x86_64
% 0.12/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.35  % Memory   : 8042.1875MB
% 0.12/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.35  % CPULimit : 300
% 0.12/0.35  % WCLimit  : 300
% 0.12/0.35  % DateTime : Wed Jun 19 15:39:54 EDT 2024
% 0.12/0.35  % CPUTime  : 
% 0.19/0.42  Command-line arguments: --lhs-weight 9 --flip-ordering --complete-subsets --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 0.19/0.42  
% 0.19/0.42  % SZS status Theorem
% 0.19/0.42  
% 0.19/0.43  % SZS output start Proof
% 0.19/0.43  Take the following subset of the input axioms:
% 0.19/0.43    fof(ax3, axiom, ?[U]: (sorti1(U) & ![V]: (sorti1(V) => op1(V, U)!=V))).
% 0.19/0.43    fof(ax4, axiom, ~?[U2]: (sorti2(U2) & ![V2]: (sorti2(V2) => op2(V2, U2)!=V2))).
% 0.19/0.43    fof(co1, conjecture, (![U2]: (sorti1(U2) => sorti2(h(U2))) & ![V2]: (sorti2(V2) => sorti1(j(V2)))) => ~(![W]: (sorti1(W) => ![X]: (sorti1(X) => h(op1(W, X))=op2(h(W), h(X)))) & (![Y]: (sorti2(Y) => ![Z]: (sorti2(Z) => j(op2(Y, Z))=op1(j(Y), j(Z)))) & (![X1]: (sorti2(X1) => h(j(X1))=X1) & ![X2]: (sorti1(X2) => j(h(X2))=X2))))).
% 0.19/0.43  
% 0.19/0.43  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.19/0.43  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.19/0.43  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.19/0.43    fresh(y, y, x1...xn) = u
% 0.19/0.43    C => fresh(s, t, x1...xn) = v
% 0.19/0.43  where fresh is a fresh function symbol and x1..xn are the free
% 0.19/0.43  variables of u and v.
% 0.19/0.43  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.19/0.43  input problem has no model of domain size 1).
% 0.19/0.43  
% 0.19/0.43  The encoding turns the above axioms into the following unit equations and goals:
% 0.19/0.43  
% 0.19/0.43  Axiom 1 (ax3): sorti1(u) = true2.
% 0.19/0.43  Axiom 2 (ax4): fresh10(X, X, Y) = v(Y).
% 0.19/0.43  Axiom 3 (ax4_1): fresh9(X, X, Y) = true2.
% 0.19/0.43  Axiom 4 (co1): fresh8(X, X, Y) = true2.
% 0.19/0.43  Axiom 5 (co1_3): fresh5(X, X, Y) = true2.
% 0.19/0.43  Axiom 6 (co1_2): fresh2(X, X, Y) = Y.
% 0.19/0.43  Axiom 7 (ax4): fresh10(sorti2(X), true2, X) = op2(v(X), X).
% 0.19/0.43  Axiom 8 (ax4_1): fresh9(sorti2(X), true2, X) = sorti2(v(X)).
% 0.19/0.43  Axiom 9 (co1): fresh8(sorti1(X), true2, X) = sorti2(h(X)).
% 0.19/0.43  Axiom 10 (co1_3): fresh5(sorti2(X), true2, X) = sorti1(j(X)).
% 0.19/0.43  Axiom 11 (co1_4): fresh4(X, X, Y, Z) = op1(j(Y), j(Z)).
% 0.19/0.43  Axiom 12 (co1_4): fresh3(X, X, Y, Z) = j(op2(Y, Z)).
% 0.19/0.43  Axiom 13 (co1_2): fresh2(sorti1(X), true2, X) = j(h(X)).
% 0.19/0.43  Axiom 14 (co1_4): fresh4(sorti2(X), true2, Y, X) = fresh3(sorti2(Y), true2, Y, X).
% 0.19/0.43  
% 0.19/0.43  Lemma 15: sorti2(h(u)) = true2.
% 0.19/0.43  Proof:
% 0.19/0.43    sorti2(h(u))
% 0.19/0.43  = { by axiom 9 (co1) R->L }
% 0.19/0.43    fresh8(sorti1(u), true2, u)
% 0.19/0.43  = { by axiom 1 (ax3) }
% 0.19/0.43    fresh8(true2, true2, u)
% 0.19/0.43  = { by axiom 4 (co1) }
% 0.19/0.43    true2
% 0.19/0.43  
% 0.19/0.43  Lemma 16: sorti2(v(h(u))) = true2.
% 0.19/0.43  Proof:
% 0.19/0.43    sorti2(v(h(u)))
% 0.19/0.43  = { by axiom 8 (ax4_1) R->L }
% 0.19/0.43    fresh9(sorti2(h(u)), true2, h(u))
% 0.19/0.43  = { by lemma 15 }
% 0.19/0.43    fresh9(true2, true2, h(u))
% 0.19/0.43  = { by axiom 3 (ax4_1) }
% 0.19/0.43    true2
% 0.19/0.43  
% 0.19/0.43  Goal 1 (ax3_1): tuple(op1(X, u), sorti1(X)) = tuple(X, true2).
% 0.19/0.43  The goal is true when:
% 0.19/0.43    X = j(v(h(u)))
% 0.19/0.43  
% 0.19/0.43  Proof:
% 0.19/0.43    tuple(op1(j(v(h(u))), u), sorti1(j(v(h(u)))))
% 0.19/0.44  = { by axiom 6 (co1_2) R->L }
% 0.19/0.44    tuple(op1(j(v(h(u))), fresh2(true2, true2, u)), sorti1(j(v(h(u)))))
% 0.19/0.44  = { by axiom 1 (ax3) R->L }
% 0.19/0.44    tuple(op1(j(v(h(u))), fresh2(sorti1(u), true2, u)), sorti1(j(v(h(u)))))
% 0.19/0.44  = { by axiom 13 (co1_2) }
% 0.19/0.44    tuple(op1(j(v(h(u))), j(h(u))), sorti1(j(v(h(u)))))
% 0.19/0.44  = { by axiom 11 (co1_4) R->L }
% 0.19/0.44    tuple(fresh4(true2, true2, v(h(u)), h(u)), sorti1(j(v(h(u)))))
% 0.19/0.44  = { by lemma 15 R->L }
% 0.19/0.44    tuple(fresh4(sorti2(h(u)), true2, v(h(u)), h(u)), sorti1(j(v(h(u)))))
% 0.19/0.44  = { by axiom 14 (co1_4) }
% 0.19/0.44    tuple(fresh3(sorti2(v(h(u))), true2, v(h(u)), h(u)), sorti1(j(v(h(u)))))
% 0.19/0.44  = { by lemma 16 }
% 0.19/0.44    tuple(fresh3(true2, true2, v(h(u)), h(u)), sorti1(j(v(h(u)))))
% 0.19/0.44  = { by axiom 12 (co1_4) }
% 0.19/0.44    tuple(j(op2(v(h(u)), h(u))), sorti1(j(v(h(u)))))
% 0.19/0.44  = { by axiom 7 (ax4) R->L }
% 0.19/0.44    tuple(j(fresh10(sorti2(h(u)), true2, h(u))), sorti1(j(v(h(u)))))
% 0.19/0.44  = { by lemma 15 }
% 0.19/0.44    tuple(j(fresh10(true2, true2, h(u))), sorti1(j(v(h(u)))))
% 0.19/0.44  = { by axiom 2 (ax4) }
% 0.19/0.44    tuple(j(v(h(u))), sorti1(j(v(h(u)))))
% 0.19/0.44  = { by axiom 10 (co1_3) R->L }
% 0.19/0.44    tuple(j(v(h(u))), fresh5(sorti2(v(h(u))), true2, v(h(u))))
% 0.19/0.44  = { by lemma 16 }
% 0.19/0.44    tuple(j(v(h(u))), fresh5(true2, true2, v(h(u))))
% 0.19/0.44  = { by axiom 5 (co1_3) }
% 0.19/0.44    tuple(j(v(h(u))), true2)
% 0.19/0.44  % SZS output end Proof
% 0.19/0.44  
% 0.19/0.44  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------