TSTP Solution File: ALG070+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : ALG070+1 : TPTP v8.1.2. Released v2.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n029.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Aug 30 16:42:09 EDT 2023

% Result   : Theorem 0.14s 0.41s
% Output   : Proof 0.14s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : ALG070+1 : TPTP v8.1.2. Released v2.7.0.
% 0.00/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.14/0.34  % Computer : n029.cluster.edu
% 0.14/0.34  % Model    : x86_64 x86_64
% 0.14/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.34  % Memory   : 8042.1875MB
% 0.14/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.34  % CPULimit : 300
% 0.14/0.34  % WCLimit  : 300
% 0.14/0.34  % DateTime : Mon Aug 28 02:54:41 EDT 2023
% 0.14/0.34  % CPUTime  : 
% 0.14/0.41  Command-line arguments: --lhs-weight 1 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 0.14/0.41  
% 0.14/0.41  % SZS status Theorem
% 0.14/0.41  
% 0.14/0.41  % SZS output start Proof
% 0.14/0.41  Take the following subset of the input axioms:
% 0.14/0.42    fof(ax2, axiom, ![U]: (sorti2(U) => ![V]: (sorti2(V) => sorti2(op2(U, V))))).
% 0.14/0.42    fof(ax3, axiom, ![U2]: (sorti1(U2) => ![V2]: (sorti1(V2) => (op1(U2, U2)!=V2 | op1(U2, V2)=U2)))).
% 0.14/0.42    fof(ax4, axiom, ~![U2]: (sorti2(U2) => ![V2]: (sorti2(V2) => (op2(U2, U2)!=V2 | op2(U2, V2)=U2)))).
% 0.14/0.42    fof(co1, conjecture, (![U2]: (sorti1(U2) => sorti2(h(U2))) & ![V2]: (sorti2(V2) => sorti1(j(V2)))) => ~(![W]: (sorti1(W) => ![X]: (sorti1(X) => h(op1(W, X))=op2(h(W), h(X)))) & (![Y]: (sorti2(Y) => ![Z]: (sorti2(Z) => j(op2(Y, Z))=op1(j(Y), j(Z)))) & (![X1]: (sorti2(X1) => h(j(X1))=X1) & ![X2]: (sorti1(X2) => j(h(X2))=X2))))).
% 0.14/0.42  
% 0.14/0.42  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.14/0.42  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.14/0.42  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.14/0.42    fresh(y, y, x1...xn) = u
% 0.14/0.42    C => fresh(s, t, x1...xn) = v
% 0.14/0.42  where fresh is a fresh function symbol and x1..xn are the free
% 0.14/0.42  variables of u and v.
% 0.14/0.42  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.14/0.42  input problem has no model of domain size 1).
% 0.14/0.42  
% 0.14/0.42  The encoding turns the above axioms into the following unit equations and goals:
% 0.14/0.42  
% 0.14/0.42  Axiom 1 (ax4_1): sorti2(u) = true.
% 0.14/0.42  Axiom 2 (ax4_2): sorti2(v) = true.
% 0.14/0.42  Axiom 3 (ax4): op2(u, u) = v.
% 0.14/0.42  Axiom 4 (co1_5): fresh(X, X, Y) = Y.
% 0.14/0.42  Axiom 5 (co1_3): fresh6(X, X, Y) = true.
% 0.14/0.42  Axiom 6 (co1_5): fresh(sorti2(X), true, X) = h(j(X)).
% 0.14/0.42  Axiom 7 (ax3): fresh15(X, X, Y, Z) = op1(Y, Z).
% 0.14/0.42  Axiom 8 (ax2): fresh11(X, X, Y, Z) = sorti2(op2(Y, Z)).
% 0.14/0.42  Axiom 9 (ax2): fresh10(X, X, Y, Z) = true.
% 0.14/0.42  Axiom 10 (co1_3): fresh6(sorti2(X), true, X) = sorti1(j(X)).
% 0.14/0.42  Axiom 11 (co1_4): fresh5(X, X, Y, Z) = op1(j(Y), j(Z)).
% 0.14/0.42  Axiom 12 (co1_4): fresh4(X, X, Y, Z) = j(op2(Y, Z)).
% 0.14/0.42  Axiom 13 (ax3): fresh3(X, X, Y, Z) = Y.
% 0.14/0.42  Axiom 14 (ax3): fresh14(X, X, Y, Z) = fresh15(sorti1(Y), true, Y, Z).
% 0.14/0.42  Axiom 15 (ax2): fresh11(sorti2(X), true, Y, X) = fresh10(sorti2(Y), true, Y, X).
% 0.14/0.42  Axiom 16 (co1_4): fresh5(sorti2(X), true, Y, X) = fresh4(sorti2(Y), true, Y, X).
% 0.14/0.42  Axiom 17 (ax3): fresh14(sorti1(X), true, Y, X) = fresh3(op1(Y, Y), X, Y, X).
% 0.14/0.42  
% 0.14/0.42  Lemma 18: fresh5(sorti2(X), true, u, X) = j(op2(u, X)).
% 0.14/0.42  Proof:
% 0.14/0.42    fresh5(sorti2(X), true, u, X)
% 0.14/0.42  = { by axiom 16 (co1_4) }
% 0.14/0.42    fresh4(sorti2(u), true, u, X)
% 0.14/0.42  = { by axiom 1 (ax4_1) }
% 0.14/0.42    fresh4(true, true, u, X)
% 0.14/0.42  = { by axiom 12 (co1_4) }
% 0.14/0.42    j(op2(u, X))
% 0.14/0.42  
% 0.14/0.42  Lemma 19: op1(j(u), j(u)) = j(v).
% 0.14/0.42  Proof:
% 0.14/0.42    op1(j(u), j(u))
% 0.14/0.42  = { by axiom 11 (co1_4) R->L }
% 0.14/0.42    fresh5(true, true, u, u)
% 0.14/0.42  = { by axiom 1 (ax4_1) R->L }
% 0.14/0.42    fresh5(sorti2(u), true, u, u)
% 0.14/0.42  = { by lemma 18 }
% 0.14/0.42    j(op2(u, u))
% 0.14/0.42  = { by axiom 3 (ax4) }
% 0.14/0.42    j(v)
% 0.14/0.42  
% 0.14/0.42  Goal 1 (ax4_3): op2(u, v) = u.
% 0.14/0.42  Proof:
% 0.14/0.42    op2(u, v)
% 0.14/0.42  = { by axiom 4 (co1_5) R->L }
% 0.14/0.42    fresh(true, true, op2(u, v))
% 0.14/0.42  = { by axiom 9 (ax2) R->L }
% 0.14/0.42    fresh(fresh10(true, true, u, v), true, op2(u, v))
% 0.14/0.42  = { by axiom 1 (ax4_1) R->L }
% 0.14/0.42    fresh(fresh10(sorti2(u), true, u, v), true, op2(u, v))
% 0.14/0.42  = { by axiom 15 (ax2) R->L }
% 0.14/0.42    fresh(fresh11(sorti2(v), true, u, v), true, op2(u, v))
% 0.14/0.42  = { by axiom 2 (ax4_2) }
% 0.14/0.42    fresh(fresh11(true, true, u, v), true, op2(u, v))
% 0.14/0.42  = { by axiom 8 (ax2) }
% 0.14/0.42    fresh(sorti2(op2(u, v)), true, op2(u, v))
% 0.14/0.42  = { by axiom 6 (co1_5) }
% 0.14/0.42    h(j(op2(u, v)))
% 0.14/0.42  = { by lemma 18 R->L }
% 0.14/0.42    h(fresh5(sorti2(v), true, u, v))
% 0.14/0.42  = { by axiom 2 (ax4_2) }
% 0.14/0.42    h(fresh5(true, true, u, v))
% 0.14/0.42  = { by axiom 11 (co1_4) }
% 0.14/0.42    h(op1(j(u), j(v)))
% 0.14/0.42  = { by lemma 19 R->L }
% 0.14/0.42    h(op1(j(u), op1(j(u), j(u))))
% 0.14/0.42  = { by axiom 7 (ax3) R->L }
% 0.14/0.42    h(fresh15(true, true, j(u), op1(j(u), j(u))))
% 0.14/0.42  = { by axiom 5 (co1_3) R->L }
% 0.14/0.42    h(fresh15(fresh6(true, true, u), true, j(u), op1(j(u), j(u))))
% 0.14/0.42  = { by axiom 1 (ax4_1) R->L }
% 0.14/0.42    h(fresh15(fresh6(sorti2(u), true, u), true, j(u), op1(j(u), j(u))))
% 0.14/0.42  = { by axiom 10 (co1_3) }
% 0.14/0.42    h(fresh15(sorti1(j(u)), true, j(u), op1(j(u), j(u))))
% 0.14/0.42  = { by axiom 14 (ax3) R->L }
% 0.14/0.42    h(fresh14(true, true, j(u), op1(j(u), j(u))))
% 0.14/0.42  = { by axiom 5 (co1_3) R->L }
% 0.14/0.42    h(fresh14(fresh6(true, true, v), true, j(u), op1(j(u), j(u))))
% 0.14/0.42  = { by axiom 2 (ax4_2) R->L }
% 0.14/0.42    h(fresh14(fresh6(sorti2(v), true, v), true, j(u), op1(j(u), j(u))))
% 0.14/0.42  = { by axiom 10 (co1_3) }
% 0.14/0.42    h(fresh14(sorti1(j(v)), true, j(u), op1(j(u), j(u))))
% 0.14/0.42  = { by lemma 19 R->L }
% 0.14/0.42    h(fresh14(sorti1(op1(j(u), j(u))), true, j(u), op1(j(u), j(u))))
% 0.14/0.42  = { by axiom 17 (ax3) }
% 0.14/0.42    h(fresh3(op1(j(u), j(u)), op1(j(u), j(u)), j(u), op1(j(u), j(u))))
% 0.14/0.42  = { by axiom 13 (ax3) }
% 0.14/0.42    h(j(u))
% 0.14/0.42  = { by axiom 6 (co1_5) R->L }
% 0.14/0.42    fresh(sorti2(u), true, u)
% 0.14/0.42  = { by axiom 1 (ax4_1) }
% 0.14/0.42    fresh(true, true, u)
% 0.14/0.42  = { by axiom 4 (co1_5) }
% 0.14/0.42    u
% 0.14/0.42  % SZS output end Proof
% 0.14/0.42  
% 0.14/0.42  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------