SET007 Axioms: SET007+9.ax
%------------------------------------------------------------------------------
% File : SET007+9 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Basic Properties of Subsets - Requirements
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : subset [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 5 ( 0 unt; 0 def)
% Number of atoms : 13 ( 0 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 9 ( 1 ~; 1 |; 3 &)
% ( 1 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 4 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 0 con; 1-1 aty)
% Number of variables : 12 ( 12 !; 0 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(t1_subset,axiom,(
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) )).
fof(t2_subset,axiom,(
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) )).
fof(t3_subset,axiom,(
! [A,B] :
( m1_subset_1(A,k1_zfmisc_1(B))
<=> r1_tarski(A,B) ) )).
fof(t4_subset,axiom,(
! [A,B,C] :
( ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C)) )
=> m1_subset_1(A,C) ) )).
fof(t5_subset,axiom,(
! [A,B,C] :
~ ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C))
& v1_xboole_0(C) ) )).
%------------------------------------------------------------------------------