SET007 Axioms: SET007+88.ax
%------------------------------------------------------------------------------
% File : SET007+88 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Many-Argument Relations
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : margrel1 [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 114 ( 49 unt; 0 def)
% Number of atoms : 336 ( 81 equ)
% Maximal formula atoms : 16 ( 2 avg)
% Number of connectives : 256 ( 34 ~; 2 |; 72 &)
% ( 19 <=>; 129 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 4 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 21 ( 19 usr; 1 prp; 0-4 aty)
% Number of functors : 31 ( 31 usr; 12 con; 0-3 aty)
% Number of variables : 137 ( 129 !; 8 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(rc1_margrel1,axiom,
? [A] : v1_margrel1(A) ).
fof(fc1_margrel1,axiom,
( v1_xboole_0(k1_xboole_0)
& v1_margrel1(k1_xboole_0) ) ).
fof(fc2_margrel1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ~ v1_xboole_0(k3_margrel1(A)) ) ).
fof(fc3_margrel1,axiom,
~ v1_xboole_0(k6_margrel1) ).
fof(rc2_margrel1,axiom,
? [A] : v2_margrel1(A) ).
fof(cc1_margrel1,axiom,
! [A] :
( m1_subset_1(A,k6_margrel1)
=> v2_margrel1(A) ) ).
fof(fc4_margrel1,axiom,
! [A] :
( v2_margrel1(A)
=> v2_margrel1(k9_margrel1(A)) ) ).
fof(fc5_margrel1,axiom,
! [A,B] :
( ( v2_margrel1(A)
& v2_margrel1(B) )
=> v2_margrel1(k10_margrel1(A,B)) ) ).
fof(fc6_margrel1,axiom,
! [A] : v2_margrel1(k13_margrel1(A)) ).
fof(d1_margrel1,axiom,
! [A] :
( v1_margrel1(A)
<=> ( ! [B] :
( r2_hidden(B,A)
=> ( v1_relat_1(B)
& v1_funct_1(B)
& v1_finseq_1(B) ) )
& ! [B] :
( ( v1_relat_1(B)
& v1_funct_1(B)
& v1_finseq_1(B) )
=> ! [C] :
( ( v1_relat_1(C)
& v1_funct_1(C)
& v1_finseq_1(C) )
=> ( ( r2_hidden(B,A)
& r2_hidden(C,A) )
=> k3_finseq_1(B) = k3_finseq_1(C) ) ) ) ) ) ).
fof(t1_margrel1,axiom,
$true ).
fof(t2_margrel1,axiom,
$true ).
fof(t3_margrel1,axiom,
$true ).
fof(t4_margrel1,axiom,
$true ).
fof(t5_margrel1,axiom,
$true ).
fof(t6_margrel1,axiom,
$true ).
fof(t7_margrel1,axiom,
! [A,B] :
( v1_margrel1(B)
=> ( r1_tarski(A,B)
=> v1_margrel1(A) ) ) ).
fof(t8_margrel1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A)
& v1_finseq_1(A) )
=> v1_margrel1(k1_tarski(A)) ) ).
fof(d2_margrel1,axiom,
! [A] :
( v1_margrel1(A)
=> ! [B] :
( v1_margrel1(B)
=> ( A = B
<=> ! [C] :
( ( v1_relat_1(C)
& v1_funct_1(C)
& v1_finseq_1(C) )
=> ( r2_hidden(C,A)
<=> r2_hidden(C,B) ) ) ) ) ) ).
fof(t9_margrel1,axiom,
! [A] :
( v1_margrel1(A)
=> ( ! [B] :
( ( v1_relat_1(B)
& v1_funct_1(B)
& v1_finseq_1(B) )
=> ~ r2_hidden(B,A) )
=> A = k1_xboole_0 ) ) ).
fof(d3_margrel1,axiom,
$true ).
fof(d4_margrel1,axiom,
! [A] :
( v1_margrel1(A)
=> ( A != k1_xboole_0
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ( B = k2_margrel1(A)
<=> ! [C] :
( ( v1_relat_1(C)
& v1_funct_1(C)
& v1_finseq_1(C) )
=> ( r2_hidden(C,A)
=> B = k3_finseq_1(C) ) ) ) ) ) ) ).
fof(d5_margrel1,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( v1_margrel1(B)
=> ( m1_margrel1(B,A)
<=> ! [C] :
( ( v1_relat_1(C)
& v1_funct_1(C)
& v1_finseq_1(C) )
=> ( r2_hidden(C,B)
=> k3_finseq_1(C) = A ) ) ) ) ) ).
fof(d6_margrel1,axiom,
! [A,B] :
( v1_margrel1(B)
=> ( m2_margrel1(B,A)
<=> ! [C] :
( ( v1_relat_1(C)
& v1_funct_1(C)
& v1_finseq_1(C) )
=> ( r2_hidden(C,B)
=> r1_tarski(k2_relat_1(C),A) ) ) ) ) ).
fof(t10_margrel1,axiom,
$true ).
fof(t11_margrel1,axiom,
$true ).
fof(t12_margrel1,axiom,
$true ).
fof(t13_margrel1,axiom,
$true ).
fof(t14_margrel1,axiom,
$true ).
fof(t15_margrel1,axiom,
$true ).
fof(t16_margrel1,axiom,
$true ).
fof(t17_margrel1,axiom,
$true ).
fof(t18_margrel1,axiom,
$true ).
fof(t19_margrel1,axiom,
$true ).
fof(t20_margrel1,axiom,
! [A] : m2_margrel1(k1_xboole_0,A) ).
fof(t21_margrel1,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> m1_margrel1(k1_xboole_0,A) ) ).
fof(d7_margrel1,axiom,
! [A,B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ! [C] :
( v1_margrel1(C)
=> ( m3_margrel1(C,A,B)
<=> ( m2_margrel1(C,A)
& m1_margrel1(C,B) ) ) ) ) ).
fof(d8_margrel1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( B = k3_margrel1(A)
<=> ! [C] :
( r2_hidden(C,B)
<=> ( r1_tarski(C,k13_finseq_1(A))
& ! [D] :
( m2_finseq_1(D,A)
=> ! [E] :
( m2_finseq_1(E,A)
=> ( ( r2_hidden(D,C)
& r2_hidden(E,C) )
=> k3_finseq_1(D) = k3_finseq_1(E) ) ) ) ) ) ) ) ).
fof(t22_margrel1,axiom,
$true ).
fof(t23_margrel1,axiom,
$true ).
fof(t24_margrel1,axiom,
$true ).
fof(t25_margrel1,axiom,
$true ).
fof(t26_margrel1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B,C] :
( m1_subset_1(C,k3_margrel1(A))
=> ( r1_tarski(B,C)
=> m1_subset_1(B,k3_margrel1(A)) ) ) ) ).
fof(t27_margrel1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> m1_subset_1(k1_tarski(B),k3_margrel1(A)) ) ) ).
fof(t28_margrel1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ! [C] :
( m1_subset_1(C,A)
=> m1_subset_1(k1_tarski(k10_finseq_1(B,C)),k3_margrel1(A)) ) ) ) ).
fof(d9_margrel1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_subset_1(B,k3_margrel1(A))
=> ! [C] :
( m1_subset_1(C,k3_margrel1(A))
=> ( r1_margrel1(A,B,C)
<=> ! [D] :
( m2_finseq_1(D,A)
=> ( r2_hidden(D,B)
<=> r2_hidden(D,C) ) ) ) ) ) ) ).
fof(d10_margrel1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_subset_1(B,k3_margrel1(A))
=> ( B = k4_margrel1(A)
<=> ! [C] :
( m2_finseq_1(C,A)
=> ~ r2_hidden(C,B) ) ) ) ) ).
fof(t29_margrel1,axiom,
$true ).
fof(t30_margrel1,axiom,
$true ).
fof(t31_margrel1,axiom,
$true ).
fof(t32_margrel1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> k4_margrel1(A) = k1_xboole_0 ) ).
fof(d11_margrel1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_subset_1(B,k3_margrel1(A))
=> ( B != k4_margrel1(A)
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> ( C = k5_margrel1(A,B)
<=> ! [D] :
( m2_finseq_1(D,A)
=> ( r2_hidden(D,B)
=> C = k3_finseq_1(D) ) ) ) ) ) ) ) ).
fof(d12_margrel1,axiom,
k6_margrel1 = k2_tarski(np__0,np__1) ).
fof(d13_margrel1,axiom,
k7_margrel1 = np__0 ).
fof(d14_margrel1,axiom,
k8_margrel1 = np__1 ).
fof(t33_margrel1,axiom,
$true ).
fof(t34_margrel1,axiom,
$true ).
fof(t35_margrel1,axiom,
$true ).
fof(t36_margrel1,axiom,
( k7_margrel1 = np__0
& k8_margrel1 = np__1 ) ).
fof(t37_margrel1,axiom,
k6_margrel1 = k2_tarski(k7_margrel1,k8_margrel1) ).
fof(t38_margrel1,axiom,
k7_margrel1 != k8_margrel1 ).
fof(d15_margrel1,axiom,
! [A] :
( v2_margrel1(A)
<=> r2_hidden(A,k6_margrel1) ) ).
fof(t39_margrel1,axiom,
! [A] :
( v2_margrel1(A)
=> ( A = k7_margrel1
| A = k8_margrel1 ) ) ).
fof(d16_margrel1,axiom,
! [A] :
( v2_margrel1(A)
=> ( ( A = k7_margrel1
=> k9_margrel1(A) = k8_margrel1 )
& ( A != k7_margrel1
=> k9_margrel1(A) = k7_margrel1 ) ) ) ).
fof(d17_margrel1,axiom,
! [A] :
( v2_margrel1(A)
=> ! [B] :
( v2_margrel1(B)
=> ( ( ( A = k8_margrel1
& B = k8_margrel1 )
=> k10_margrel1(A,B) = k8_margrel1 )
& ( ~ ( A = k8_margrel1
& B = k8_margrel1 )
=> k10_margrel1(A,B) = k7_margrel1 ) ) ) ) ).
fof(t40_margrel1,axiom,
! [A] :
( v2_margrel1(A)
=> k9_margrel1(k9_margrel1(A)) = A ) ).
fof(t41_margrel1,axiom,
! [A] :
( v2_margrel1(A)
=> ( ( A = k7_margrel1
=> k9_margrel1(A) = k8_margrel1 )
& ( k9_margrel1(A) = k8_margrel1
=> A = k7_margrel1 )
& ( A = k8_margrel1
=> k9_margrel1(A) = k7_margrel1 )
& ( k9_margrel1(A) = k7_margrel1
=> A = k8_margrel1 ) ) ) ).
fof(t42_margrel1,axiom,
$true ).
fof(t43_margrel1,axiom,
! [A] :
( v2_margrel1(A)
=> ( A != k8_margrel1
<=> A = k7_margrel1 ) ) ).
fof(t44_margrel1,axiom,
$true ).
fof(t45_margrel1,axiom,
! [A] :
( v2_margrel1(A)
=> ! [B] :
( v2_margrel1(B)
=> ( ( k10_margrel1(A,B) = k8_margrel1
=> ( A = k8_margrel1
& B = k8_margrel1 ) )
& ( ( A = k8_margrel1
& B = k8_margrel1 )
=> k10_margrel1(A,B) = k8_margrel1 )
& ~ ( k10_margrel1(A,B) = k7_margrel1
& A != k7_margrel1
& B != k7_margrel1 )
& ( ( A = k7_margrel1
| B = k7_margrel1 )
=> k10_margrel1(A,B) = k7_margrel1 ) ) ) ) ).
fof(t46_margrel1,axiom,
! [A] :
( v2_margrel1(A)
=> k10_margrel1(A,k9_margrel1(A)) = k7_margrel1 ) ).
fof(t47_margrel1,axiom,
! [A] :
( v2_margrel1(A)
=> k9_margrel1(k10_margrel1(A,k9_margrel1(A))) = k8_margrel1 ) ).
fof(t48_margrel1,axiom,
$true ).
fof(t49_margrel1,axiom,
! [A] :
( v2_margrel1(A)
=> k10_margrel1(k7_margrel1,A) = k7_margrel1 ) ).
fof(t50_margrel1,axiom,
! [A] :
( v2_margrel1(A)
=> k10_margrel1(k8_margrel1,A) = A ) ).
fof(t51_margrel1,axiom,
! [A] :
( v2_margrel1(A)
=> ( k10_margrel1(A,A) = k7_margrel1
=> A = k7_margrel1 ) ) ).
fof(t52_margrel1,axiom,
! [A] :
( v2_margrel1(A)
=> ! [B] :
( v2_margrel1(B)
=> ! [C] :
( v2_margrel1(C)
=> k10_margrel1(A,k10_margrel1(B,C)) = k10_margrel1(k10_margrel1(A,B),C) ) ) ) ).
fof(d18_margrel1,axiom,
! [A] :
( ( ~ r2_hidden(k7_margrel1,A)
=> k13_margrel1(A) = k8_margrel1 )
& ( r2_hidden(k7_margrel1,A)
=> k13_margrel1(A) = k7_margrel1 ) ) ).
fof(t53_margrel1,axiom,
! [A] :
( ( ~ r2_hidden(k7_margrel1,A)
=> k14_margrel1(A) = k8_margrel1 )
& ~ ( k14_margrel1(A) = k8_margrel1
& r2_hidden(k7_margrel1,A) )
& ( r2_hidden(k7_margrel1,A)
=> k14_margrel1(A) = k7_margrel1 )
& ( k14_margrel1(A) = k7_margrel1
=> r2_hidden(k7_margrel1,A) ) ) ).
fof(s1_margrel1,axiom,
( ! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A)
& v1_finseq_1(A) )
=> ! [B] :
( ( v1_relat_1(B)
& v1_funct_1(B)
& v1_finseq_1(B) )
=> ( ( p1_s1_margrel1(A)
& p1_s1_margrel1(B) )
=> k3_finseq_1(A) = k3_finseq_1(B) ) ) )
=> ? [A] :
( v1_margrel1(A)
& ! [B] :
( ( v1_relat_1(B)
& v1_funct_1(B)
& v1_finseq_1(B) )
=> ( r2_hidden(B,A)
<=> ( r2_hidden(B,f1_s1_margrel1)
& p1_s1_margrel1(B) ) ) ) ) ) ).
fof(s2_margrel1,axiom,
( ! [A] :
( m2_finseq_1(A,f1_s2_margrel1)
=> ! [B] :
( m2_finseq_1(B,f1_s2_margrel1)
=> ( ( p1_s2_margrel1(A)
& p1_s2_margrel1(B) )
=> k3_finseq_1(A) = k3_finseq_1(B) ) ) )
=> ? [A] :
( m1_subset_1(A,k3_margrel1(f1_s2_margrel1))
& ! [B] :
( m2_finseq_1(B,f1_s2_margrel1)
=> ( r2_hidden(B,A)
<=> p1_s2_margrel1(B) ) ) ) ) ).
fof(s3_margrel1,axiom,
? [A] :
( m1_subset_1(A,k3_margrel1(f1_s3_margrel1))
& ! [B] :
( m2_finseq_1(B,f1_s3_margrel1)
=> ( k3_finseq_1(B) = f2_s3_margrel1
=> ( r2_hidden(B,A)
<=> p1_s3_margrel1(B) ) ) ) ) ).
fof(dt_m1_margrel1,axiom,
! [A] :
( m1_subset_1(A,k5_numbers)
=> ! [B] :
( m1_margrel1(B,A)
=> v1_margrel1(B) ) ) ).
fof(existence_m1_margrel1,axiom,
! [A] :
( m1_subset_1(A,k5_numbers)
=> ? [B] : m1_margrel1(B,A) ) ).
fof(dt_m2_margrel1,axiom,
! [A,B] :
( m2_margrel1(B,A)
=> v1_margrel1(B) ) ).
fof(existence_m2_margrel1,axiom,
! [A] :
? [B] : m2_margrel1(B,A) ).
fof(dt_m3_margrel1,axiom,
! [A,B] :
( m1_subset_1(B,k5_numbers)
=> ! [C] :
( m3_margrel1(C,A,B)
=> v1_margrel1(C) ) ) ).
fof(existence_m3_margrel1,axiom,
! [A,B] :
( m1_subset_1(B,k5_numbers)
=> ? [C] : m3_margrel1(C,A,B) ) ).
fof(symmetry_r1_margrel1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& m1_subset_1(B,k3_margrel1(A))
& m1_subset_1(C,k3_margrel1(A)) )
=> ( r1_margrel1(A,B,C)
=> r1_margrel1(A,C,B) ) ) ).
fof(reflexivity_r1_margrel1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& m1_subset_1(B,k3_margrel1(A))
& m1_subset_1(C,k3_margrel1(A)) )
=> r1_margrel1(A,B,B) ) ).
fof(redefinition_r1_margrel1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& m1_subset_1(B,k3_margrel1(A))
& m1_subset_1(C,k3_margrel1(A)) )
=> ( r1_margrel1(A,B,C)
<=> B = C ) ) ).
fof(dt_k1_margrel1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& m1_subset_1(C,A) )
=> m2_fraenkel(k1_margrel1(A,B,C),B,A,k1_fraenkel(B,A)) ) ).
fof(redefinition_k1_margrel1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& m1_subset_1(C,A) )
=> k1_margrel1(A,B,C) = k2_funcop_1(B,C) ) ).
fof(dt_k2_margrel1,axiom,
! [A] :
( v1_margrel1(A)
=> m2_subset_1(k2_margrel1(A),k1_numbers,k5_numbers) ) ).
fof(dt_k3_margrel1,axiom,
$true ).
fof(dt_k4_margrel1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> m1_subset_1(k4_margrel1(A),k3_margrel1(A)) ) ).
fof(dt_k5_margrel1,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& m1_subset_1(B,k3_margrel1(A)) )
=> m2_subset_1(k5_margrel1(A,B),k1_numbers,k5_numbers) ) ).
fof(dt_k6_margrel1,axiom,
$true ).
fof(dt_k7_margrel1,axiom,
m1_subset_1(k7_margrel1,k6_margrel1) ).
fof(dt_k8_margrel1,axiom,
m1_subset_1(k8_margrel1,k6_margrel1) ).
fof(dt_k9_margrel1,axiom,
! [A] :
( v2_margrel1(A)
=> v2_margrel1(k9_margrel1(A)) ) ).
fof(involutiveness_k9_margrel1,axiom,
! [A] :
( v2_margrel1(A)
=> k9_margrel1(k9_margrel1(A)) = A ) ).
fof(dt_k10_margrel1,axiom,
$true ).
fof(commutativity_k10_margrel1,axiom,
! [A,B] :
( ( v2_margrel1(A)
& v2_margrel1(B) )
=> k10_margrel1(A,B) = k10_margrel1(B,A) ) ).
fof(dt_k11_margrel1,axiom,
! [A] :
( m1_subset_1(A,k6_margrel1)
=> m1_subset_1(k11_margrel1(A),k6_margrel1) ) ).
fof(involutiveness_k11_margrel1,axiom,
! [A] :
( m1_subset_1(A,k6_margrel1)
=> k11_margrel1(k11_margrel1(A)) = A ) ).
fof(redefinition_k11_margrel1,axiom,
! [A] :
( m1_subset_1(A,k6_margrel1)
=> k11_margrel1(A) = k9_margrel1(A) ) ).
fof(dt_k12_margrel1,axiom,
! [A,B] :
( ( m1_subset_1(A,k6_margrel1)
& m1_subset_1(B,k6_margrel1) )
=> m1_subset_1(k12_margrel1(A,B),k6_margrel1) ) ).
fof(commutativity_k12_margrel1,axiom,
! [A,B] :
( ( m1_subset_1(A,k6_margrel1)
& m1_subset_1(B,k6_margrel1) )
=> k12_margrel1(A,B) = k12_margrel1(B,A) ) ).
fof(redefinition_k12_margrel1,axiom,
! [A,B] :
( ( m1_subset_1(A,k6_margrel1)
& m1_subset_1(B,k6_margrel1) )
=> k12_margrel1(A,B) = k10_margrel1(A,B) ) ).
fof(dt_k13_margrel1,axiom,
$true ).
fof(dt_k14_margrel1,axiom,
! [A] : m1_subset_1(k14_margrel1(A),k6_margrel1) ).
fof(redefinition_k14_margrel1,axiom,
! [A] : k14_margrel1(A) = k13_margrel1(A) ).
%------------------------------------------------------------------------------