SET007 Axioms: SET007+847.ax
%------------------------------------------------------------------------------
% File : SET007+847 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Catalan Numbers
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : catalan1 [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 25 ( 3 unt; 0 def)
% Number of atoms : 71 ( 9 equ)
% Maximal formula atoms : 9 ( 2 avg)
% Number of connectives : 68 ( 22 ~; 0 |; 17 &)
% ( 0 <=>; 29 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 4 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 11 ( 10 usr; 0 prp; 1-3 aty)
% Number of functors : 18 ( 18 usr; 7 con; 0-2 aty)
% Number of variables : 22 ( 22 !; 0 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(fc1_catalan1,axiom,
! [A] :
( v4_ordinal2(A)
=> ( v4_ordinal2(k1_catalan1(A))
& v1_xcmplx_0(k1_catalan1(A))
& v1_xreal_0(k1_catalan1(A))
& ~ v3_xreal_0(k1_catalan1(A))
& v1_int_1(k1_catalan1(A)) ) ) ).
fof(fc2_catalan1,axiom,
! [A] :
( ( ~ v1_xboole_0(A)
& v4_ordinal2(A) )
=> ( ~ v1_xboole_0(k1_catalan1(A))
& v4_ordinal2(k1_catalan1(A))
& v1_xcmplx_0(k1_catalan1(A))
& v1_xreal_0(k1_catalan1(A))
& v2_xreal_0(k1_catalan1(A))
& ~ v3_xreal_0(k1_catalan1(A))
& v1_int_1(k1_catalan1(A)) ) ) ).
fof(t1_catalan1,axiom,
! [A] :
( v4_ordinal2(A)
=> ( ~ r1_xreal_0(A,np__1)
=> r1_xreal_0(k5_binarith(A,np__1),k5_binarith(k3_xcmplx_0(np__2,A),np__3)) ) ) ).
fof(t2_catalan1,axiom,
! [A] :
( v4_ordinal2(A)
=> ( r1_xreal_0(np__1,A)
=> r1_xreal_0(k5_binarith(A,np__1),k5_binarith(k3_xcmplx_0(np__2,A),np__2)) ) ) ).
fof(t3_catalan1,axiom,
! [A] :
( v4_ordinal2(A)
=> ~ ( ~ r1_xreal_0(A,np__1)
& r1_xreal_0(k5_binarith(k3_xcmplx_0(np__2,A),np__1),A) ) ) ).
fof(t4_catalan1,axiom,
! [A] :
( v4_ordinal2(A)
=> ( ~ r1_xreal_0(A,np__1)
=> k1_nat_1(k5_binarith(A,np__2),np__1) = k5_binarith(A,np__1) ) ) ).
fof(t5_catalan1,axiom,
! [A] :
( v4_ordinal2(A)
=> ~ ( ~ r1_xreal_0(A,np__1)
& r1_xreal_0(k7_xcmplx_0(k6_xcmplx_0(k3_xcmplx_0(k3_xcmplx_0(np__4,A),A),k3_xcmplx_0(np__2,A)),k2_xcmplx_0(A,np__1)),np__1) ) ) ).
fof(t6_catalan1,axiom,
! [A] :
( v4_ordinal2(A)
=> ~ ( ~ r1_xreal_0(A,np__1)
& r1_xreal_0(k6_newton(k3_xcmplx_0(np__2,A)),k3_xcmplx_0(k3_xcmplx_0(k11_newton(k5_binarith(k3_xcmplx_0(np__2,A),np__2)),A),k2_xcmplx_0(A,np__1))) ) ) ).
fof(t7_catalan1,axiom,
! [A] :
( v4_ordinal2(A)
=> ~ r1_xreal_0(np__4,k3_xcmplx_0(np__2,k6_xcmplx_0(np__2,k7_xcmplx_0(np__3,k2_xcmplx_0(A,np__1))))) ) ).
fof(d1_catalan1,axiom,
! [A] :
( v4_ordinal2(A)
=> k1_catalan1(A) = k7_xcmplx_0(k7_binom(k5_binarith(A,np__1),k5_binarith(k3_xcmplx_0(np__2,A),np__2)),A) ) ).
fof(t8_catalan1,axiom,
! [A] :
( v4_ordinal2(A)
=> ( ~ r1_xreal_0(A,np__1)
=> k1_catalan1(A) = k7_xcmplx_0(k11_newton(k5_binarith(k3_xcmplx_0(np__2,A),np__2)),k3_xcmplx_0(k11_newton(k5_binarith(A,np__1)),k6_newton(A))) ) ) ).
fof(t9_catalan1,axiom,
! [A] :
( v4_ordinal2(A)
=> ( ~ r1_xreal_0(A,np__1)
=> k1_catalan1(A) = k6_xcmplx_0(k2_nat_1(np__4,k7_binom(k5_binarith(A,np__1),k5_binarith(k3_xcmplx_0(np__2,A),np__3))),k7_binom(k5_binarith(A,np__1),k5_binarith(k3_xcmplx_0(np__2,A),np__1))) ) ) ).
fof(t10_catalan1,axiom,
k1_catalan1(np__0) = np__0 ).
fof(t11_catalan1,axiom,
k1_catalan1(np__1) = np__1 ).
fof(t12_catalan1,axiom,
k1_catalan1(np__2) = np__1 ).
fof(t13_catalan1,axiom,
! [A] :
( v4_ordinal2(A)
=> v1_int_1(k1_catalan1(A)) ) ).
fof(t14_catalan1,axiom,
! [A] :
( v4_ordinal2(A)
=> ( r1_xreal_0(np__1,A)
=> k1_catalan1(k2_xcmplx_0(A,np__1)) = k7_xcmplx_0(k6_newton(k3_xcmplx_0(np__2,A)),k3_xcmplx_0(k6_newton(A),k6_newton(k2_xcmplx_0(A,np__1)))) ) ) ).
fof(t15_catalan1,axiom,
! [A] :
( v4_ordinal2(A)
=> ~ ( ~ r1_xreal_0(A,np__1)
& r1_xreal_0(k1_catalan1(k2_xcmplx_0(A,np__1)),k1_catalan1(A)) ) ) ).
fof(t16_catalan1,axiom,
! [A] :
( v4_ordinal2(A)
=> r1_xreal_0(k1_catalan1(A),k1_catalan1(k2_xcmplx_0(A,np__1))) ) ).
fof(t17_catalan1,axiom,
! [A] :
( v4_ordinal2(A)
=> r1_xreal_0(np__0,k1_catalan1(A)) ) ).
fof(t18_catalan1,axiom,
! [A] :
( v4_ordinal2(A)
=> m2_subset_1(k1_catalan1(A),k1_numbers,k5_numbers) ) ).
fof(t19_catalan1,axiom,
! [A] :
( v4_ordinal2(A)
=> ( ~ r1_xreal_0(A,np__0)
=> k1_catalan1(k2_xcmplx_0(A,np__1)) = k3_xcmplx_0(k3_xcmplx_0(np__2,k6_xcmplx_0(np__2,k7_xcmplx_0(np__3,k2_xcmplx_0(A,np__1)))),k1_catalan1(A)) ) ) ).
fof(t20_catalan1,axiom,
! [A] :
( v4_ordinal2(A)
=> ~ ( ~ r1_xreal_0(A,np__0)
& r1_xreal_0(k1_catalan1(A),np__0) ) ) ).
fof(t21_catalan1,axiom,
! [A] :
( v4_ordinal2(A)
=> ~ ( ~ r1_xreal_0(A,np__0)
& r1_xreal_0(k3_xcmplx_0(np__4,k1_catalan1(A)),k1_catalan1(k2_xcmplx_0(A,np__1))) ) ) ).
fof(dt_k1_catalan1,axiom,
! [A] :
( v4_ordinal2(A)
=> m1_subset_1(k1_catalan1(A),k1_numbers) ) ).
%------------------------------------------------------------------------------