SET007 Axioms: SET007+84.ax
%------------------------------------------------------------------------------
% File : SET007+84 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Zermelo's Theorem
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : wellset1 [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 10 ( 3 unt; 0 def)
% Number of atoms : 43 ( 6 equ)
% Maximal formula atoms : 12 ( 4 avg)
% Number of connectives : 41 ( 8 ~; 3 |; 17 &)
% ( 2 <=>; 11 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 6 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 8 ( 6 usr; 1 prp; 0-2 aty)
% Number of functors : 9 ( 9 usr; 2 con; 0-2 aty)
% Number of variables : 21 ( 19 !; 2 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(t1_wellset1,axiom,
! [A,B] :
( v1_relat_1(B)
=> ( r2_hidden(A,k3_relat_1(B))
<=> ~ ! [C] :
( ~ r2_hidden(k4_tarski(A,C),B)
& ~ r2_hidden(k4_tarski(C,A),B) ) ) ) ).
fof(t2_wellset1,axiom,
$true ).
fof(t3_wellset1,axiom,
! [A,B,C] :
( v1_relat_1(C)
=> ( C = k2_zfmisc_1(A,B)
=> ( A = k1_xboole_0
| B = k1_xboole_0
| k3_relat_1(C) = k2_xboole_0(A,B) ) ) ) ).
fof(t4_wellset1,axiom,
$true ).
fof(t5_wellset1,axiom,
$true ).
fof(t6_wellset1,axiom,
! [A,B,C] :
( v1_relat_1(C)
=> ( ( r2_hidden(A,k3_relat_1(C))
& r2_hidden(B,k3_relat_1(C))
& v2_wellord1(C) )
=> ( r2_hidden(A,k1_wellord1(C,B))
| r2_hidden(k4_tarski(B,A),C) ) ) ) ).
fof(t7_wellset1,axiom,
! [A,B,C] :
( v1_relat_1(C)
=> ~ ( r2_hidden(A,k3_relat_1(C))
& r2_hidden(B,k3_relat_1(C))
& v2_wellord1(C)
& r2_hidden(A,k1_wellord1(C,B))
& r2_hidden(k4_tarski(B,A),C) ) ) ).
fof(t8_wellset1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ! [B] :
~ ( ! [C] :
( r2_hidden(C,B)
=> ( ~ r2_hidden(k1_funct_1(A,C),C)
& r2_hidden(k1_funct_1(A,C),k3_tarski(B)) ) )
& ! [C] :
( v1_relat_1(C)
=> ~ ( r1_tarski(k3_relat_1(C),k3_tarski(B))
& v2_wellord1(C)
& ~ r2_hidden(k3_relat_1(C),B)
& ! [D] :
( r2_hidden(D,k3_relat_1(C))
=> ( r2_hidden(k1_wellord1(C,D),B)
& k1_funct_1(A,k1_wellord1(C,D)) = D ) ) ) ) ) ) ).
fof(t9_wellset1,axiom,
! [A] :
? [B] :
( v1_relat_1(B)
& v2_wellord1(B)
& k3_relat_1(B) = A ) ).
fof(s1_wellset1,axiom,
? [A] :
! [B] :
( v1_relat_1(B)
=> ( r2_hidden(B,A)
<=> ( r2_hidden(B,f1_s1_wellset1)
& p1_s1_wellset1(B) ) ) ) ).
%------------------------------------------------------------------------------